Mathemalica
Balkanica

New Series Vol. 6, 1992, Fasc. 3
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In this paper we introduce an extended interval arithmetic structure .#* involving infinite
intervals which is a further extension of the extended interval arithmetic .4 using finite intervals and
an extended set of basic interval arithmetic operations. The structure .#* is compared to other known
interval arithmetic structures. We discuss three possible directions of extensions of the conventional
real interval arithmetic &, which have been developed as algebraic structures during the last two
decades and which have proved to be useful for applications in interval analysis: i) the extension .4 by
supplementary nonstandard interval-arithmetic operations, ii) the extensions I(R*) and .#* by
infinite intervals and iii) the extension X by generalized intervals. These three types of extended
structures have been introduced in alogically consecutive order by using uniform notations and can be
considered as substructures of a single extended structure. The paper contains new expressions for the
interval-arithmetic operations by means of the end-points of the ‘operands which are suitable for
software implementation and new relations in the extended interval arithmetic structures involved.
The space .4* involving infinite (but proper) intervals and additional (nonstandard) operations finds a
natural place among the considered extensions. In this paper we also propose a field of applications for
the interval spaces X" and X™* using generalized intervals. The idea is based on a correspondence
between the spaces .# and X', resp. between 4 * and X*, demonstrated in the paper which can be used
to transfer numerical applications in .4, resp. 4*, into corresponding applications in X', resp. .4*.

1. Introduction

The algebraic incompleteness of the conventional interval arithmetic as
introduced and developed in [1, 29, 33, 41, 42] etc. and its limited applications led
to various proposals for possible extensions. In this paper we survey several
extended interval arithmetic structures, that have proved to be useful for
applications in interval analysis and related fields. Our survey uses uniform
notations so that the reader can easily follow the various directions of the
presented extended algebraic structures. In a logically consecutive order we
introduce: the conventional interval arithmetic &, the extended interval
arithmetic .4 using two basic nonstandard operations and a basic nonstandard
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relation [5,6], [22]—[27], the extensions &* and .#* of &, resp. .4, by infinite
intervqls, the extended interval arithmetic & using generalized intervals and its
extension X"* by the corresponding infinite elements [9], [14]—[19], [31). We give

below'a short motivation for the use of the considered interval-arithmetic
extensions.

Extended interval arithmetic operations. One of the main fields
for applications of interval arithmetic is the computation of ranges
of functions over intervals from the set I(R) of all closed intervals on
the real line R (see e. g. [35]). If a function f is defined in a domain D, then its range
over an interval X<D is the set f(X)={f(x)|xeX}. Let y=f (x, t)be a
continuous function of two variables defined on D x T. Fig. 1 presents a typical
situation when the argument x is considered as parameter taking values from an
interval X=[x", x*]<D, and f is considered as a family of functions on ¢
depending on a parameter x. Let us fix two values ¢, t, for the argument ¢ and
consider the functions f, (x)=f(x;t,), f,(x)=f(x;t,). Providing we know the
ranges of f,, f, over X,i.e.:

LX) =fX5t)={f(x; t)lxeX},  [,)=F(X;t)={f(x; t,)lxeX},

we seek the range of the composite function h(x)=f, (x) * f, (x), *e{+, —, x,/ }
using the already known ranges f, (X), f,(X). This is a key problem, since its
solution contributes to the solution of the problem of finding the range of an
arbitrary rational function. To be more specific, consider the case * = +. We
know that if f; and f, are continuous on X, then the ranges f, (X), f,(X) are
intervals and for the range of h(x)=f,(x)+f,(x) over X we have
WX)={f, (x)+f,(x)IxeX}<=f, (X)+f,(X), where f, (X)+f,(X) is the sum of the
intervals f,(X) and f,(X) defined by [a~, a*]+[b~, b*]=[a" +b~, a* +b*].
Moreover, if f,, f, are monotone in X and are both nondecreasing or are both
nonincreasing on X, then the above inclusion becomes an equality relation, i. e.
WX)={f, (x)+f, (®¥)xeX}=f, (X)+f,(X). Since monotone and partially
monotone functions are widely used in practical applications, equality relations
of the above type can be very useful. However, such equality relations are only
true in “half” of the situations, namely when both functions are “equally”
monotone. In “the other half” of the cases when one of the functions is monotone
increasing and the other is monotone decreasing (see Fig. 1) the familiar interval
arithmetic & can not provide an exact expression for h(X) and the corresponding
inclusion may not be sufficiently sharp. An exact expression in this situation can
be obtained by means of extended interval arithmetic. There are two different
approaches, both of which provide exact expressions in such a situation. The
interval arithmetic space . introduced in section 3 provides a supplementary
nonstandard interval-arithmetic operation “.#-addition”, defined by [a~,
a*]+ " [b7,b*]=[min{a” +b*,a* +b~},max{a” +b*,a* +b"}]. We can assert
that h(X)=f, (X)+ ~f, (X) whenever f, and f, are differently monotone on X and
the sum h is monotone, which covers “the other half’ of the practical situations.
Supplementary “.#-operations” are introduced for subtraction, multiplication
and division as well in the following way. Let A=[a", a*], B=[b", b*],
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E={a” *b™, a~ #b*, a* «b™, a* « b7}, *+e{+, —, x, /}. Consider the
situation when all four points of E are different. Then the set E, of the two outer
points of E determins the usual interval-arithmetic operations by A * B=[min E,
max E]=hull (E,). The set E\E, consisting of the remaining two (inner) elements
of E defines then the corresponding .#-operations by A *~ B=hull (E\E,).
Using these supplementary interval-arithmetic operations in combination
with the standard ones we can efficiently compute ranges of monotone functions
(see [27] and section 8). If monotonicity can not be assumed interval arith-
metic operations can be emploid for obtaining inner and outer inclusions:
J1(X) ™ [,(X)<=(f; * ) X)<sf (X) * [,(X).

Generalised and directed intervals. Wide possibilities for practical applica-
tions provides the interval-arithmetic space X developed in [31], [14]—[19].
Let us give the main idea of this possibility, pointing out thereby a large
field of application of the interval structure X, which seems not to
be noticed by now. The support of X is the set of all ordered couples of real
numbers, called generalised intervals. This set is equivalent to the set of all
couples of the form (t, [a, b]), te{+, —}, [a, bleI(R). Here a binary variable t
provides additional information which can be interpreted as a “direction” of the
interval in which some variable (possibly defined by a functional value) traces the
interval. Because of this interpretation we may call such couples “directed
intervals”. Directed intervals can be conveniently stored in the form of
two-dimensional vectors (called generalized intervals) by setting [c, d]={[a, b), if
1=+ [b, a), if t=—}. The set of directed intervals is isomorphic to the set of
generalized intervals and obeys simple interval arithmetic rules: addition of
directed intervals is defined as addition of two-dimensional vectors and
multiplication is defined by an isometric extension of the corresponding definition
for intervals from I (R). Using such an arithmetic we may put in correspondence to
the range f(X) the generalized interval f[X]=[f(x"), f(x*)]. Note that f[X]is a
proper interval (or an interval directed from left to right) if f is nondecreasing on
X and is an improper interval (or an interval directed from right to left) if f is
nonincreasing on X (Fig. 1). So the generalized interval f[X] is the range f(X)
together with a supplementary information w. r. t. the type of monotonicity of f,
which is provided by the order of the end-points. Now if f,, f, and h=f, +f, are
monotone, then the generalized interval h[X]=f,[X]+/,[X] again corresponds to
the range h(X) in the sense that h(X) and h[X] have same endpoints, but h[X]
carries an additional information concerning the type of monotonicity of h on X
(see section 8).

Another useful extension is the one by infinite intervals. This extension
allows to consider monotone functions possibly tending to infinity at certain
points of their interval domain, having as ranges infinite intervals of the form
[— o0, a], [b, 0}, [— o0, 0], [a, co]U[— o0, b] etc. (see Fig. 2). Using infinite intervals
we can define division by intervals containing zero obtaining thereby an
algebraically closed interval space. In sections 5, 6 we extend the .#-operations
for infinite intervals and give explicit expressions for the interval-arithmetic
operations involving infinite intervals.
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The present paper aims to give a concise and logically consequent
introduction in some of the known extended interval-arithmetic structures using
thereby uniform notations, which may help the reader to orient himself in the
existing literature on such extensions. Another attempt in this direction is
undertaken in [8]; however infinite intervals are not considered there.
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2. The conventional interval space ¥=(I(R), +, X%, /, €)

An interval [a, b], a, b, €R, a<b, is a compact set on the real line R defined by
[a, b]={x|a<x <b}. The set of all intervals will be denoted by

(1 I(R)={[a, b]|a, beR, a<b}.
The functionals (+)~, (+)* :I(R)—R assign to each interval AeI(R) the left, resp.
the right endpoint of A, that is A=[(4)~, (4)*]. For the endpoints (4)~, (4)* we
shall also use the notations A~ or a~, resp. A* or a* (as in [22]). Hence, for
A€l (R) the symbol A4* (or &) with se{+, —} denotes certain end-point of A,

which can be the left one or the right one depending on the value of s. We define
the “product” st for s, te{+, —} by ++=——=+4+, + —=—+ = —, so that

a**=a""=a" etc.
Denote the set of intervals containing zero by
Z={Ael(R)|0eAd}={[a", a*]el(R) |a~ £0=La"};
the set of intervals which do not contain zero (so-called zero free intervals) is
I(R\Z={A€l(R)|0¢A}={A€el(R)|a* <0 or a~ >0}.

Denote by Z*={Ael(R) |a~ <0<a™*} the set of all intervals containing a
neighbourhood of zero. Then I (R)\Z*={A €I (R) |a* <0ora~ 20} is the set of all
intervals that may contain zero only as an endpoint. Define a “sign functional”
o :I(R)\Z*—-{+, —}, by means of

+, if 0Za™;

a(A)={
—, if a* 0, A#[0, 0].

The interval arithmetic structure & =(I (R), +, x,/, <) [29] —[41] consists of
the supporting set I(R) together with a relation for inclusion < and three
operations: addition + :I(R)xI(R)—I(R), multiplication x :I(R)xI(R)
—I(R) and inversion (reciprocal value) /:I(R)\Z—I (R), defined for A=[a", a*],
B=[b", b*] by (in the sequel “—” means “iff”, “A” means “and”) :

) AcBo(b™<a )Na*£b*), for A, Bel(R),
(3) A+B=[a"+b",a*+b*], for A, Bel(R),
[a B p~A) goB po] for A, Bel(R)\Z,

4 AxB=<[a’b7’ a®b’], 5=0(A), for AeI(R)\Z, BeZ,

[a~?b®, a®b%), 5=a(B), for AeZ, Bel(R\Z,
(5) AxB=[min{a~b*,a*b"},max{a” b ,a* b*}], for A, BeZ,
6) 1/B=[1/b*, 1/b), BeI (R\Z.
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Remarks. The definition of “x” is given by two separate formulae (4) and
(5), for the sake of easier reference. We can formally replace Zin (4) and (5) by Z*;
then the definition of multiplication gains some computational advantages. The
case when some of the intervals in (4), (5) is zero can be treated on a computer
separately by setting [0, 0] x B=A4 x [0, 0]=[0, 0] x [0, 0]=[0, 0]=0.

In the special case when A is a degenerated interval of the form 4 =[a, a]=a,
we have A x B=ax B=[ab™®, ab°®|={[ab~, ab*),if a20; [ab*, ab~), if a<0}.
The operation a x B will be further referred as “scalar multiplication” and will be
also denoted a.B or just aB. Scalar multiplication with a=—1 is called
“negation” ; we have (—1)xB=—B=-[b", b*]=[—b"*, —b~]. The operation
A—B is defined in & as a compound operation composed by the operations
addition and negation by

() A—-B=A+(—1)x B=A+(—B)=[a"—b*, a*—b"], A, Bel(R).

Therefore we exclude the operation “—" from the set of basic operations of . On
the other hand, inversion 1/B in & can not be derived from the basic operations
“+4+” and “ x” (e. g. the element “1/B” is not inverse w.r.t.“ x ) and thus has to be
included in the notation of the algebraic structure & =(I(R), +, X, /, ). After
defining 1/B as an independent monadic interval operation we then define the
operation division A/B as a compound operation composed by multiplication (4)
and the operation 1/B given by (6):

®) A/B=Ax(1/B), Ael(R), Bel(R)\Z.

Calculation of the end-points of the expression A4 x (1/B) by substituting (6) in (8)
produces

[a " B®/p*A | g°Bp=e ] for A, Bel(R)\Z,
A/B=
[a™%/b~% a%/b~%, 6=0(B), for AeZ, Bel(R)\Z.

We next recall the basic laws of the interval space & = (i (R),+, x,/, <) (see e.
g. [1]). If not specified, A4, B, C,... denote elements of I(R), resp. of I(R)\Z when
used as divisors.

S1. A+B=B+A, AxB=BxA.

S2.(A+B)+C=A+B+C), (AxB)xC=Ax(BxC).

S3. X =[0,0]=0and Y=[l, 1]=1 are the unique neutral elements with respect
to addition and multiplication; that is,

A=X+AX=[0,0]; A=Yx AoY=[1, 1].

S4. No element A€I(R) with A~ #A* has an inverse with respect to + and
no element Ae€I(R)\Z has an inverse w.r.t. x. The elements — 4 and 1/4 (which
might be suspected for such inverse elements, but are not) satisfy

0cA+(—A)=A—A, resp. leAx(1/4)=A/A.
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SS. For arbitrary 4, B, CeI(R) we have 4 (B+C)= AB+ AC. An equality
relation holds true in the following special cases [33]

a(B+C)=aB+aC, aeR,

A(B+C)=AB+ AC, if B, CeI(R\Z, o(B)=0(C).

S6. Let * €{+, —, x, /}. Then XcX,=X« C<X, * C. As a corollary,
XSX, YSY,=»X+YSX, *Y,.

S7. I(R) is a lattice w. r. t. . The lattice operations w. r. t. < are the
intersection (the meet) and the connected union (the joint) of two intervals:

inf_(A, B)={[max{A_, B~}, min{A4*, B*}],if max.{A‘, B }<min{d4*, B*},
’ otherwise
=[AAB],

sup. (4, B)=[min {A~, B™}, max{4*, B*}]=[A v B].

In the special case when the intervals A, B are degenerated (point) intervals,
A=a, B=B, a, BeR, then the joint [AvB]=[avf] provides another form of
representation of an interval with known endpoints a, f (but possibly with
unknown order of these endpoints).

A detailed study of the properties of the relations meet and joint (also in
combination with the arithmetic operations) is given in [41]).

We end this section by noting that the operations +, —, x,/in & defined by
(3)—(8) satisfy the relations:

) A *» B={a *blaeA4, beB}, » e{+, —, x,/},
A, BeI(R) (BeI(R)\Z for * =),

which are the basis for the practical application of interval arithmetic. In most
textbooks on applied interval analysis relations (9) are used as definitions.
However, such definitions are of little use for an abstract presentation of the
interval arithmetic as algebraic structure; they are not suitable for software
implementations as well. More details on the algebraical aspects of the
conventional interval-arithmetic structure % can be found in [1, 14, 28, 33, 36).

We next consider an extension of & by introducing two new operations
and a new relation in .

3. The extended interval space #=(I(R), +, +7, X, x~, €, <)

For A=[a~, a*)el(R) define w(4)=a* —a~ and u(A)=(a” +a*)/2. Define
x(A)={a"/a* if 0= pu(A4); a*/a~ if 0> pu(A)}, for A#[0, 0] [34, 35]. In addition to
the sign functional ¢ we shall use the functionals ¢, y: I(R)xI (R)-»{+, —}
defined by:

1A
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+, if w(4)2o(B); +, if x(4)2x(B);
¢(A,B)={ ) A,B:{ if x(4)2 x(B)

—, otherwise, —, otherwise.

The interval-arithmetic structure #=(I(R), +, +~, x, x~, <, 5) is
defined [22]—[26] as an extension of ¥=(I(R), +, x,/, <). In addition to the
basic concepts (2)—(5) # involves two independent operations + ~, x ~ and a
relation < defined by:

(100 A+"B=[a"*+b% a*+b™ %), a=¢(A, B), for A, BeI(R),
([ao®* p-ote g=oBre potbi) ¢4, B), for A, BeI(R)\Z,
J[a"’b“’, a=2b%, 5=0(A), for AeI(R\Z, BeZ,

(11) Ax ~B=
[a=%b~% a’b™?%, 6=0(B), for AeZ, Bel(R)\Z,

(max{a~ b*, a* b}, min{a~b", a*b*}] for 4, BeZ,
(12) A<Be(a” b )A@* Sb*), for A, Bel(R).

The variables a=¢(A4, B), e=y(A, B)in (10), (11) are responsible for the order
of the endpoints in the results of the operations and provide an elegant software
implementation of the above operations. If we do not need to know this order,
then we can use a representation by means of a joint. Then the formulae involving
a, ¢ obtain the following form

A+ "B=[@ +b*WVa* +b7)), for A, Bel(R),
Ax "B=[(a"® b~ *AW)y(a B peA4)] for A, Bel(R)\Z.

Note that A+ “(—A)=0, Ax ~(1/4)=1, which means that —A=[—a",
—a~] and 1/4A=[1/a*, 1/a”] are inverse elements with respect to the basic
M -operations + ~ and x . Recall that the operator 1/4 can not be related to (or
composed by means of) the basic interval-arithmetic operations “+” and “x”
and therefore should be considered as independent operator in &, but the same
operator 1/4 should not be considered as an independent operator in .4, since it is
an inverse element of the basic .#-operation x ~. The algebraic structure .4
defined by (1)—(5), (10)—(12) involves the following four compound operations
composed by means of the basic interval arithmetic operations +, + 7, x, x~
and the inverse elements — A and 1/4 with respect to the operations + ~ and x 7,
resp. : the compound operations A —B=A+(— B) and A/B= A x(1/B) defined by
(7), resp. (8) and the operations:

(13) A—"B=A+"(—B)=[a"*—b"% a*—b"], a=¢(A, B),
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(14 A/ B=Ax ~(1/B)
[a®Be/po A g=oBle/p-aldle]  ¢— (A, B), for A, BeI(R)\Z,

[a=%/b%, a*/b%), S=o(B) for AeZ, Bel(R)\Z.

Using the operation “joint” we can again reformulate the above expressions
involving the variables « and ¢ in the following more comprehensive form (but not
so suitable for programming):

A-"B=[(@a” —b")a* - b")],

A/~ B=[(a"®/b"W)(a~*B/p~)] for A, Bel(R)\Z.

The four basic operations defined by (3)—(5), (10), (11) together with the four
compound operations (7), (8), (13), (14) summarize eight interval arithmetic
operations in 4. Four of them coincide with the conventional interval arithmetic
operations in %, namely the operations +, —, X, /, defined by (3), (7), (4)—(5), (8),
resp., which will be further referred as &-operations: & -addition, &-subtraction
etc. The supplementary interval-arithmetic operations + ~, x =, —~, /~ will be
further referred as nonstandard operations or .#-operations.

Recall that the interval-arithmetic operation for division “/” can be
composed by means of the operation x and the inverse element 1/4 w.r. t. x ~
(analogously to the situation with the subtraction “—" which is also a compound
operation). This is the reason to define the algebraic structure .# as the set (I (R),
+,+ 7, x, x 7, €, £), excluding thereby division (or inversion) from the set of
independent (basic) operations of .#.

Remark. In our previous publications [5,6], [22] —[27] we assume as basic
the operations +, —~, x and /~. Under such an assumption the .#-operations
+ 7, x ~ (which have been assumed as basic in this presentation) are composed
from the chosen basic operations by means of: A+ " B=A4A—"(—B), Ax B
= A/~(1/B). The operations — ~ and /~ (which have been previously assumed as
basic) have been denoted by — and /, respectively, and the operations + ~, —, x ~
and / have been denoted by &, ©, ®, and Q, respectively. Our earlier notations
for #-subtraction and .#-division (— and /, resp.) are in confusion with the
notations for the & -subtraction and for the &-division as adopted in the
literature on interval analysis [1], [29] —[35], [41].

In what follows we use the notations +**=+" =+, +* 7=
+ t'=4+", x*t=x""=x*=x, x*‘—x‘ =x" For AeI(R)\Z we
shall denote |[A|=0(4) A={A, if 6(A)=+ ; — A, if o(4)= —}

In addition to relations S1—S7 the extended interval space .# obeys the
following laws:

ML. For A, BeI(R) we have A+ " B=B+ "4, Ax "B=Bx " A.

Ma2. For A, B, CeI(R) we have
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(A+B)+ C=A4+"%9 (B+~0);

A+7*B9(B+7C) if o(A)zw(B),

A+~ (B+0) if o(4)<w(B);
A+ 7O B+7C) if oAA)<w(B),

A+ " (B+C) if e(A)Zw(B).

(A+_B)+C={

(A+‘B)+'C={

For A, B, CeI(R)\Z we have:
(AxB)x "C=Ax "¥®9 (Bx ~C);

Ax¥EO(Bx~C) if (A)=x(B),

(Ax "B)xC=
Ax “(BxC) if x(A)>x(B);
AxYEO(Bx ~C) if y(4)zx(B),
(A x "B) x ‘C={
Ax " (BxC) if y(A)<x(B).

M3. X=[0,0]=0 and Y=[1, 1]=1 are the unique neutral elements with
respect to .#-addition and .#-multiplication; that is,

A=X+"A=A+"X for all AeI(Ry»X=[0, 0],
A=Yx "A=Ax"Y for all Ael(R)}>Y=][1, 1].

M4. Every element A €I (R) has an unique inverse element with respect to + ~
and every element A€l (R)\Z possesses an unique inverse element with respect to
x ~. These are the elements — A, resp. 1/4,i. e.:0=A+ (—A)=A—"A and
1=Ax ~(1/A)=A/" A.

MS. In addition to the distributivity law S5 we have in # distributive laws
involving equality relations

a(B+ "C)=aB+ ~aC, aeR,
A(B+C)=AB+ ~AC, if B, CeI(R\Z, o(B)= —a(C).
Moreover, for A, B, C, A+Bel(R)\Z we have
(AxC)+(BxC) if o(A)=0(B);
(A+B)x C=[(A x C)+¥CB (Bx ~C) if o(A)=—o(B)=0(4+B),
L (Ax " C)+¥CA (BxC) if o(d)=—0o(B)=—0(A+B);
((Ax ~C)+vAO¥ED (Bx ~(C) if o{A)=0(B);

(A4+B)x ~C={ (Ax ~C)+¥C (Bx C) if 6(A)=—a(B)=0(A+B),
(A X C)+*CP (Bx ~C) if o{4)=—5(B)= —0(4+B);
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(AxC)+ ¥R (Bx () if o(4)=0(B), w(A)2a(B),
(Ax~C)+¥“4 (Bx C) if 6(4)=0(B), w(A)<w(B),
(A% C)+~(BxC) if 6(A)=—0o(B), (4, B)>0,

(A+ " B)xC= <

(A X TC)+VCACR (Bx ~C) if o(4)=—0a(B), ¢(A, B)<O;
[(Ax~C)+ ¥4 (Bx C) if 6(A)=0(B), w(A)2(B),
(Ax C)+¥“P (Bx ~C) . if 6(4)=0(B), a(A4)<w(B),

(A+"B)x ~C={
(Ax ~C)+ ~VCAER (Bx ~C) if o(d)=—a(B), &(4, B)20,

L(AXC)+7(Bx () if o(d)=—a(B), {(A, B)<O,
wherein £ (4, B)=0(A x(A+ ~B)) ¢(A, B).

M6.Let * e{+ ~, — "} and X,X,, Y, Y,eI(R). Under the assumption X2X,,
YcY, we have

If fX)<w(Y), then X*YcX, *Y,,

if o(X,)=a(Y,), then X* Y2X, *7Y,.

Let * e{x ", /7},and X, X, Y, Y,€eI(R)\Z, are such that X2X, YCSY,.
Under this assumption we have:

If min {y(X), x(X,)}2max{x(Y), x(Y,)}, then X« YcX +Y,,

If max {y(X), x(X,)}<min {¢(Y,)}, 2(Y,)}, then X* Y2X, *+7Y,.

Let * €e{+, + 7} and X, X,, Y, Y,eI(R). Then X<X,, YSY, =X+Y
=X, *Y,.

Let *€{—, —7} and X, X,, Y, Y,el(R). Then XXX, Y2Y,=X+Y
SX *Y,.

Let « e{x, x~} and X, X,, Y, Y,eI(R\Z. Then |X|S|X,|, |YIS|Y,|
=X« YSX *Y,.

Let * €{/,/"} and X, X,, Y, Y,eI(R\Z. Then |X|=|X,|,|Y|2|Y,|=>X+Y
=X, +Y,.

M7. I(R) is a lattice w. r. t. <. The lattice operations w. r.t. < are:

inf (4, B)=[min{A~, B}, min{4*, B*}],

supg (4, B)=[max{4~, B"}, max{4*, B*}].

If A< B, then we shall write the joint C=[AvB]in the form C=[A, B], and say
that A4, B are the left, resp. the right, (interval) endpoints of C.

The #-operations satisfy the relations 4 *+~ B A * B and are useful for
obtaining presentations for the ranges of functions and inner inclusions. This is
illustrated by the following example.

19 Mathematica Balkanica, 3, 1992
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Example. Consider the function h(x)=1—x+x2, xeX =[0, 1]. Denoting
f(x)=1—x, g(x)=x?, we have F(X)=1—-X, G(X)=X x X =X We divide the
interval [0, 1] into two subintervals [0, 1/2], [1/2, 1] such that f, g and h are
monotone in each subintervals. According to a theorem [27] we can compute
exactly the range of h in each subinterval using #-addition: H(|O,
12])=(1—-X)+ ~X?*=[3/4, 1], H([1/2, 1])=(1—-X)+ ~X*=[3/4, 1], obtaining
finally H(X)=H ([0, 1/2])UH ([1/2, 1])=[3/4, 1]. If we do not use monotonocity
arguments (see section 8) then we can only get inclusions; standard addition
produces an outward inclusion whereas .#-addition produces inner inclusion.
Indeed we have F(X)+G(X)=[0, 1]+[0, 1]=[0,2] and F(X)+ ~G(X)=[0, 1]+
[0, 1]=[1, 1.

4. Extensions by infinite (inner) intervals

Extensions by infinite intervals are considered in [2], [4], [9], [10] —[21], [30],
[37]—[40]. Such extensions are useful for the developement of: i) the theoretical
backgrounds of differentiation and integration of functions (in particular, certain
classes of discontinuos functions and so-called segment functions); ii)
algebraically closed interval and computer arithmetic structures; iii) various
interval numerical methods, in particular methods involving division by intervals
containing zero. In this section we extend the set I(R) into a set J involving
infinite intervals and extcnd the definition domains of the corresponding
relations and operations in &, resp. 4, obtaining thereby the extended interval
structures L3=(3, +, x,/, €) and A=(3, +, +7, x, x 7, &, £). We first
extend the real line R by two supplementary elements, denoted by — oo, oo,
satisfying by definition the relation — oo <a< oo for all arR. The extended real
line will be denoted R* =Ru{— 0, 0} =[— o0, ). We next extend the set I(R) by
a set of intervals of the form:

[— o0, al={x|x<La} [B, 0]={x|x=p}. a BeR,
called (nondegenerate) infinite inner intervals, and intervals of the form
[— o0, —w]=— o0, [00, 00]=00, [~ 00, c0]=R*,

further referred as degenerate infinite inner intervals. The whole set of infinite
inner intervals (briefly : ii-intervals) will be denoted by

F={[- o, a], [, ®]}, [-, =], [~c0, ], [0, co]|a, BeR}

={[— o0, a], [B, ]|a, peR}uU{— 00, R¥, o}

={[— o, a], [, «]|a, BeR*}.
Denote further I=I(R)u.#. We can briefly write
I={[, Bl BeR*, a<B}.
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We shall classify the familiar intervals from I(R) as finite inner intervals or
briefly fi-intervals; and the intervals from the set I=I(R)uf (that is the
fi-intervals together with the ii-intervals) will be classified as inner intervals or
briefly i-intervals.

Using formula (2) and that — 00 <a < oo for all ae R* we extend the definition
domain of the relation < from I(R)xI (R) into IxJ by (in what follows we
denote A=[a", a*)e3 and B=[b", b*]eI):

AcSBeb <a” and a* Sb*.

Examples. We have [— o0, 0][— o0, 0], [0, 0] R*.

We consider below two methods to define arithmetic operations in J.

Method 1. This method is used in [4], [14], [21]. We first extend the domain of
the real arithmetic operations from R into R*. The results of the operations in R*
will not necessarily belong to R* ; there will be situations when the result is equal
to R* itself. We define the arithmetic (R*, +, x,/, £) as follows (* stands for a
well defined result in R):

Addition a+b=b+a

a
- aeR ©
b
— 00 - — o R*
beR . 00
o} 0

Multiplication a.b=b.a

‘ —oo | —o<a<0| O 0<a<wo - )
b
- © © 0 - -
—<b<0 . 0 . -
0 0 0 0
O<b<o . ©
. ©
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Inversion 1/b, b#0

b 1/b

— 0
beR, b#0 .
© 0

b -b
) ©
beR .

© )

In (R* +, x, /, £) we define the composite operations a—b, a/b by
a—b=a+(—b) and a/b=a.(1/b), b#0; from these definitions we obtain the
following tables for the results of the corresponding operation

Subtraction a—b=a+(—b)

a
- aeR e}
b

— o0 R* 0 o
beR — . oY)
© -0 -0 R*

Division a/b=a(1/b), b0

- | —0o<a<0]| O O<a<oo e}

b

- 0 0 0 0 0
—o<b<0|l o . 0 . — o
O<b<o || —© * 0 . ©
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In order to close the arithmetic over R* we can consider it as algebraic
structure with supporting set the set & of all elements of R* together with R*
itself, #={x|xeR*}U{R*}. We then define a+ R*=R* for ae#, a x R*=R* for
acR, a#0,0x R*=0 etc.

Remark. Similar definitions of arithmetic operations on the extended real
line R* can be found in [4], [14], [21], [40] etc. Our definitions differ from the one’s
known to us in the situations when the result defined by the above tables
coincides with the interval R*. Most of the familiar definitions consider these
situations as “undefined”. The settings (4 00)x 0=0, resp. (+ o)/(+ ©0)=0 are
controversial.

Denote by Z4 the set of all i-intervals, which contain zero, that is

Zy={[a",a*]la” 20=a*,a7,a*eR*}.

We now extend the domains of the arithmetic operations +, —, X,/ from
I(R) into 3 by means of the following definition.

We define 4 +B, * e{+, —, x, /}, for i-intervals (except for division by
intervals containing zero) by means of formulae (2)—(8) modified by formally
replacing in these formulae I(R) by 3 and Z by Z,, i. e.

(15) A+B=[a"+b~, a* +b*], for A, BeS,
[a= P b= g°B poW for A, BeI\Z,,

(16 AxB=<[a’b™? a’b%), 6=0(4), for AeIN\Z,, BeZ,

[a72b% a’b’], 6=0(B), for AeZy, BeS\Z,,
(17) AxB=[min {a~ b*, a* b~ }, max{a~ b~, a* b*}], for A, BeZ,,
(18) 1/B=[1/b*, 1/b"), Be\Zs,
(19) A—B=A+(—1).B=A+(—B)=[a~ —b*, a* —b"], 4, Be3,

[a=sB/peD) goB)jp = oA for A, Be3\Z,,
(20) A/B=A x(1/B)= {
[a=%/b~% a®/b™?%, 6=0(B), for AeZy, BeI\Z,.

We note that the endpoints of the resulting intervals, computed by (15)—(20)
are elements of #. If both endpoints are elements of R*, then the result belongs
to 3. If some of the computed endpoints is equal to R*, then the resulting interval
(with possibly interval endpoints in the sense of S7 or M7) is equal to R*. By all
means the resulting interval is an element of 3. It can be verified that the basic
relations (9) hold true with a formal substitution of I(R) by 3and of Zby Zyin (9).
The application of the above definition is illustrated below.

Examples. For a, beR* we have
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[a, o©]+[~ 0, —o]=[a— 0, 00— o0]=[—00, R*]=[(—0)vR*]=R*,
[— o0, a]+[00, 0]=[—00+00, a+00]=[R* + c0]=[R*V(+ 0)]=R*,
[0, a]+[b, c0]=[— 0, 0]=R*

[—1, 1]x[00, 0]=[—00, c0]=R¥,

[~ 1, 1]x[~w, o] =[-w, co]=R*,
1/[a, ©]=[0, 1/a, for a>0,
1/[— oo, a]=[1/a, 0}, for a<0,
1/[e0, o0]=1/[— 00, —a0]=][0, 0],
[1, w]l, o]=[1, ] x(1/[1, c])=[1, 0] x[0, 1]=[0, o],

[— o0, o]/[1, w]=[—00, 0]x[0, 1]=[—c0, ©0]=R*.

It is possible to extend the definitions of the sign functionals involved in the
definition of the .#-operations and to use the above method to obtain extensions
of these operations in 3. In what follows we shall do this in a direct way (Method 2
below).

Method 2. The definitions of the interval-arithmetic operations in 3 by
Method 1 are suitable for direct implementation on computer. However, formulae
(15)—(20) does not give an easy overview on the type of the computed results for
the various classes of operands, like 4, Be3J; A€J, Bel(R) etc. This can be
achieved by deriving special expressions for computing with nondegenerate
i-intervals involving their finite endpoints. These formulae avoid the operations
between elements in R* as prescribed in formulae (15)—(20) (except when
degenerated ii-intervals are involved) and are also suitable for software/hardware
applications.

We first introduce special notations for intervals from £.

Denote S~ ={[a, w]|aeR }, F*={[— o0, a]|aeR }. Denoting A=|a,
o]=(a, —)for AeS~ and A=[— 0, a]=(a, +) for AeS " we obtain the uniform
notation

A=(a, i(4)), AeF/{R*},

wherein for 4# R*

—, if A=[a, 0lesS~;
i(A)={

+, if A=[—o0, ales*.




Extended Interval Arithmetic Involving Infinite Intervals 285

Using these notations we can formulate the standard arithmetic in J in the
following equivalent to Method 1 way.
Inclusion. For A=(a, i(A)) €4, B=(b, i(B)) €.,

i(A)=i(B)= +and a<b;
ASBe ( i(A)=iB)=—and azb;

i(A)=—i(B) and B=R*.
Addition. For A=(a, i(A)) €S, B=(b, i(B)) €5 the sum A+ Bef and is
given by
(@a+b, i), if (A)=iB)=i;
A+B={
R*, if i(A)= —i(B).
For A=(a, i(A)) €4, B=[b", b*]el(R) the sum A+ Be.f and is given by
A+ B=(a+b'", i(A)).
Multiplication. For A=(a, i(A) €#, B=(b, i(B) €S the product
A x BeS and is given by
(ab, i(A)i(B)), if A, BeS\Z};
AxB={
R*, otherwise,

wherein Z5 ={4ef|a” <0<a™},so that #£\Z is the set of all ii-intervals which
do not contain zero as inner point (that is do not contain a two-sided
neighbourhood of zero).

For A=(a, i(A)) €4, B=[b~,b*]el(R) the product A x Bef and is given by

ab¥*®, i(A)a(B)), if Bel(R\Z;
AxB={

R*, if BeZ,
wherein
-, |if AeJ\Z;
{(A)= {
+, if AeZ’,.

Let Z,={Aef|a” <0=a"*}, so that #\Z, is the set of all ii-intervals which
do not contain zero.

Inversion. For B=(b, i(B)) e #\Z, the reciprocal interval 1/Bel(R)\Z is
given by

1/(b, —)=1/[b, ]=[0, 1/b], b>0; 1/(b, +)=1/[— o0, b]=[1/b, 0], b<O.

———




286 S. M. Markov

We next give the expressions for the composite operations negation,
subtraction and division.

Negation. For A=(a, i(A)) €f the interval — A€ is given by
—A=—(a, {A)=(—a, —i(4).

Subtraction. For A=(a, i(A4)) ef, B=(b, i(B)) s the difference
A—B=A+(—B)€eSs and is given by

a—b, A)), if i(A)=—iB),
A—B=
R*, if i(A)=i(B).
For A=(a, i(A)) €S, B=[b", b*]el(R) the interval 4A—Be and is given by
A—B=(a—b"'"™, j(A)).
For A=[a", a*])el(R), B=(b, i(B)) €S the interval A—Be.# and is given by
A—B=(a"'"®—p, —iB)).

Division.For A=(a, i(A)) €4, B=(b, i(B)) € #\Z, the interval ratio A/Be S
and is given by

(a/b, i(A)(B)), if AeZ,

A/B= {
(0, i(A)i(B)), if AeSA\Z;,.
For A=(a, i(A)) €f#, B=[b~,b*]eI(R)\Z the interval 4/Be.# and is given by
A/B=(a/b~ "B i 4)q(B)).

For A=[a", a*]el(R), B=(b, i(B)) e #\Z, the interval A/Bel(R) and is
given by

[0, @“/b]=[0, a=*®b], if AeI(R\Z and o(4)= —iB),
A/B= {[a®“/b, 0]=[a"®/b, 0], if AeI(R\Z and o(4)=i(B),

[@*®/b, a~®p), if AeZ.

The interval structure thus obtained will be denoted by ¥+=(3, +, x,/, ).
We shall next extend the .#-operations in &4 obtaining thereby the structure
'”3=(39 +9 +—) X, X —, g: é)’

Relation <. For A=(a, i(A)) €4, B=(b, i(B)) €4,
i(A)i(B)= + and a<b

AZBe <i(A)=+, i(B)=— for arbitrary endpoints a, b,

i(A)=—, i(B)=+ and A=B=R*.
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Examples. —o0=<R* R*=<o0, [~ o0, 0]Z[0, 0], [~ o0, 0]=Z[— 00, o0],
[— 0, w]é[()’ w]

M-addition. For A=(a, i(4)) €#, B=(b, i(B)) €. the interval A+ “Bef is
defined by

(@+b, —ala+b)), iff (4)=—iB);
A+'B={
(—i(A))o, if i(A)=i(B).

For A=(a, i(A)) €#,B=[b",b*]el(R) the interval A+ ~Be.f and is given by
A+ " B=(a+b"'", i(A)).
#A-multiplication. For A=(a, i(A)) €4, B=(b, i(B)) e# the interval
A x “BeS is defined by
—i(A)i(B))o, if A, BeS\Z';
Ax " B=

ab, —a(ab)), otherwise.
For A=(a, i(A)) €#, B=[b", b*]el(R) the interval 4 x “Be.f is defined by
ab~t B j 4)g(B)), if Bel(R\Z;
Ax " B=
(

i(A))oo, if BeZ.

M-subtraction. For A=(a, i(4A) €sf, B=(b, i(B))esf the interval
A—"B=A+ " (—B) €S and is given by

a—b, —ola—b)), if (A)=iB);
A-—"B=
(—i(A))oo, if i(4)=—iB).
For A=(a, i(A)) €#, B=[b",b*]el(R) the interval A— ~Be.# and is given by
A—"B=(a—b'", i(A)).
For A=[a", a*]el(R), B=(b, i(B)) .# the interval A— ~Bef and is given by
A—"B=(a"®—b, —i(B)).

M-division For A=(a, i(4)) €S, B=(b, i(B)) e £\Z, the interval A/"B=A
x ~(1/B)eSf and is given by
(a/b, —i(A)i(B)), if AeS\Z]
A/‘B={
0, —iA)iB), if AeZ].
For A=(a, i(A)) €#, B=[b~, b*]eI(R)\Z the interval A/~ Bef and is
given by



288 S. M. Markov

A/~ B=(a/b"“*®) i A)s(B)).

For A=[a", a*)el(R), B=(b, i(B)) e #\Z, the interval A/~ Bel(R) and is
given by

[0, a=*“/b]=[0, a*®/b), if AeI(R\Z and o(Ad)= —i(B),
A/"B=1[a~"“Yb, O)=[a~"®/b, 0], if AeI(R\Z and o(d)=i(B),

[0, 0], if AeZ.

The above expressions are also valid for the situation when the operands are
degenerate ii-intervals of the form — oo, R*, oo. In this case the extended real
arithmetic (R*, +, X, /, <) from Method 1 should be used.

5. Extensions by infinite outer intervals (Kahan-intervals)

In this section we extend the set J into a set I(R*)=3J U0 involving infinite
outer intervals (that is intervals which contain infinities in their interior). We then
extend the definition domains of the corresponding relations and operations
obtaining thus the extended interval structures &*, resp. #*, which admit
division by intervals containing zero (intervals from Z.). The space ¥* is a
substructure of .#*; it is also a substructure of the space X * introduced by E.
Kaucher [14] which we shall mention in the end of section 6 (see also [9]
and [21]).

Infinite outer intervals or briefly o-intervals, also known as Kahan-intervals
(see [21]), are obtained as result of the operation A/B for A€l (R), BeZ*.To clarify
this consider relation (9) for A=1, B=[b", b*] with b~ <0<b*, i. e. 1/[b",
b*]1={1/b|be[b~, b*]}. The right-hand side is not defined since 1/b is not defined
for b=0. However, for sufficiently small ¢>0

1[b~, b*]=lim,.o {1/b|be[b™, b*]\(—¢, &)}
=lim,,, {1/b|be[b™, —e]julim,_q{1/b|bele, b*]}

=[1/b%, oo]u[— 0, 1/b7].
This is a reasonable motivation for considering sets of the form
{x|x=a or x< B} =[a, co]U[— 00, B], &, BER,

which will be called o-intervals and will be denoted by (a, B). To the set of
o-intervals we shall. add the limit cases {0, ), {a, — ), {00, — o0 ), defined by
<<X), ﬂ) =[— o0, mu{w}’ <(1, - CD>=[l1, w]U{ - w}’

{0, = @) ={a0}u{~ @} = {00, —ao}= + o0,

which will be referred as degenerated o-intervals. If a<pf then <(a, B)
=[a, co]u[— o0, f]=R*; if a > f we shall say that the o-interval (a, B) is normal.
The definition of an o-interval obtains the form
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21) <a, pO={x|x2a or xS p}=[a, ©]U[— 0, B], a, BeR*.

The set of all o-intervals will be denoted by 0* ={<a, f) | «, fe R*} and the set
of all normal o-intervals will be denoted by @ ={<a, B)|a, BeR*, a> B} so that:
0*={<x, B>|a, BeR*, a>B}U{R*} =OU{R*}.

We shall further say that the inner intervals (intervals from I=I(R)u.f) and
the normal outer intervals (the intervals from @) are intervals from different type.
The interval set I(R) extended by both types of infinite intervals will be
denoted by

I(R®)=3u0=I (R)usu0.

In the course of a computation involving normal o-intervals it may
sometimes happen that the computed left endpoint a~ of an o-interval becomes
less than the right endpoint a*. Such a situation is called overlapping and can be
expected by certain operations. The result of an operation which possibly leads to
overlapping and therefore needs normalisation will be further marked by an
asterik ; during normalisation the interval changes its type from an O-interval to
an S-interval:

{a~, a*), if a~>a*,
A*={(a", a*)‘={

R*, otherwise.

Remark. For inner and outer intervals some authors are using same
notations since a normal o-interval can be recognized by the relation a~ >a* [14],
[21], [30). We are using special notation for the outer intervals in order to preserve
the notation [, ] with a> B for the improper intervals considered in section 6,
which have a completely different meaning. E. Kaucher uses three different
types of special notations: (a, §, 0) for inner intervals, (a, §, 1) for outer proper
intervals and («, §, —1) for outer improper intervals.

We now introduce the extended interval structure *=(I (R*), +, x,/, €).
We first extend the definition domain of the relation < from I(R)x I (R) into
I(R*)x I (R*) by means of the following table (in what follows we denote
A=[a",a%]if AeJ and A=(a", a*) if A€0):

Relation inclusion A< B+

Ae
3I=I(R)usS 0
Be
3 b~ ga” and a* Sb* B=R*
o b-<a~ ora*sh*t b-<a” and a*<b*

Standard interval arithmetic operations involving o-intervals are introduced
by means of the basic relation (9). The endpoint expressions for the operations
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involving (normal) o-intervals can be obtained by i) presenting the o-intervals as
union of two intervals; ii) using the fact that the standard arithmetic operations
and the operation “U” are distributive, and iii) using the endpoint expressions for
i-intervals. The endpoint expressions for the standard operations involving
o-intervals obtained in the above mentioned manner are presented below. For
convenience we give tables for the standard operations involving both types of
intervals.

Addition. If both intervals A, B are o-intervals (A, Be0), then ¥-addition
is defined by

A+B=<{a",a*)+<{b",b*)=R*
If the intervals A and B are from different type, say A€3, Be(® then
A+B=[a",a*]1+<{b7,b*)=<(a"+b ", a* +b*)H*
{a~+b~, a*+b*), if w(A4)<w(B),

{R*, otherwise.

In the above formula a(<{a~, a*))=|a” —a*|=a~ —a™. In particular, if Ae.#,
then w(A)=o0, and A+ B=R*.

The complete definition of addition for intervals from I(R*) can be
summarised in the following table

Operation addition A+ B=B+ A

Ae
I=I(R)usS 0
Be
3 [a~+b~,a*+b*] (@ +b~,a*+b*)*
0 {(a +b ,a* +b*)* R*

Examples. <1, —1>+[—1, 1]=<0, 0>*=R*, (1, —1>+[0, 1]=(1, 0,
1, —1>+<1, —1>=R*.

Multiplication. In order to define multiplication denote by Z, the set of
outer intervals which does not contain zero, that is Z,={{a ,a*)|a* <0<a7};
then the set O\Z,={<a™, a*)|a* <a™ <0 or 0<a* <a™} is the set of outer
intervals, which contain zero. The expressions for the interval product 4 x B in
I(R*) is given by the following table
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Operation multiplication A x B=Bx A

A
INZy Zy 0\Z, Z,
B
[a~*® b=, [a~’b?, ab%), {a~ "B p=oA), {a™’b~% £b7?%),
IN\Z4
a® b'('"] S =a(B) a"® b"‘“)‘ S =a(B)
[a*b?, a'b?), [min{a~ b*, a* b~},
Zy R* R*
d=o0(A) max{a~ b~, a* b*}]
(a=*® p-e,
O\Z, R* R* R*
a*'® bt(A)>t
@™*b?, a *b’)y, {min{a~b~, a* b*},
6=0(A) max{a~ b*, a*b"})

Examples. {5/3, 1) x[1/5, 1/4]={1/3, 1/4), {5/4, 1) x[1/5, 1/4]={1/4,
1/4>*=R*.

According to the above definition for the special case of scalar multiplication
involving outer intervals we have

{aa~, aa*>e0, if a>0,
a.{a”,a*)=[a, a]x{a",a*)=<0eJ, if a=0,

{aa®, aa”Ye0, if a<O0;
in particular negation of an o-interval is given by
—1.{a",a*)={—a*, —a")eO.

Division. Division is defined by A/B=A x(1/B), where inversion 1/B is
defined by the following table

Operation inversion 1/B

Be 1/B 1/Be
I\Zy [1/b%, 1/b7] 3

Zy 1/b*, 1/b™) o
0\Z, 1/b*, 167> 0

Z, [1/b*, 0]U[0, 1/b7] I(R%)
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In the first situation Be 3\ Zythe result 1/B may not belong to 3\ Zy because if
B~ or B* is equal to oo or — o0, then some of the endpoints of the result will be
zero and therefore the result is not in 3\Z,. In the second case if some of the
endpoints B~ or B* is zero we obtain a degenerated o-interval of the form (o0, ),
{a, —00), {0, —o0). The result in the case BeO\Z, may not belong to O\Z,
because if B~ or B* is equal to — oo or to oo then some of the endpoints of the
result will be zero. In the last situation BeZ, the result can be either an inner
interval or an outer interval. Indeed we have

([1/b*, 1/b71eS, if b~ b* #£0,

J o, 1/b7e0, if b*=0, b~ #0,

1/B=[1/b*, 0]U[0, 1/b™]=
{1/b*, —0)e®, if b~=0, b* #0,

{0, —)e0, if b-=b*=0.

By showing that the results of the arithmetic operations are always elements
of I(R*) we thus proved that &* is a closed interval space. The properties of ¥*
are studied in [9], [14].

We now introduce the extended interval structure 4#*=(I(R*), +, +, X,
x 7, €, S) by defining a relation < and two operations + ~ and x ~.

Relation A<B

Ae
3I=I(R)u 0
Be
3 a“$h” and a* Sb* B=[b", ©]and b~ 2a"
0 A=[-, a*} a* Sb* a” S$b” and a* Sb*

A -addition is defined as follows. For two outer intervals, A, Be® we set
(x=¢(4, B)):
A+ B=<{a",a*)+ b, b*>={a"*+b% a*+b™%)
{a~ +b*, a*+b™), if w(A)Zw(B),
{(a*+b", a~+b*), if w(4)=w(B)
If A and B are from different type, then we set:
{a~, a*)+"[b", b*]=<(a" +b*, a*+b~), for A€0, Be3;

A+'B={
[a-, a*]+ (b, b*)=(a*+b~, a~ +b*), for A3, BeO.
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The above definitions are summarized in the following table (x=¢(4, B)):

Operation #-addition A+ "B=B+ "4

Ae
3I=I(R)us (]
Be \
3 [a *+b% a*+b~ (@~ +b*,a*+b")
o {a*+b,a" +b*) (@™ *+b% a*+b™*) |

The nonstandard multiplication is introduced as follows (e=y (4, B) below):
Operation #-multiplication Ax " B=Bx "4

A
VA Zy 0\Z, 2y
B
[@®p-ox | (@b @bt | (@ @b e | (abod a'bh,
NZy
™ e® peia) §=0(B) ame®epany | 5 o(B)
[a™®b7% a?b", | [max{a~b*, a*b~}, [<a~*b7? a~*b*),| <max{a~ b*, a* b},
Zy
d=0(A) min{a~b~, a*b*}] |6=0(A) min{a~ b~, a* b*})
X Ca®ep=oe | (a7ib7d, a'bdy, | (amepmeux, a™*b, @by,
o\Z,
aq~oBs b'('“‘) d= a'(B) a~ Bk bo(A)t) o= G(B)
<a=*b7% a’b%),| (max{a~b*, a* b7}, | <a®b7? a®b?*), | <max{a~b~, a* b*},
Zy
5=0(A) min{a~b~, a*b*}) | d=0(A) min{a~ b*, a*b"})

Due to the overlapping effect not all of the properties S1 —S7and M1 —M?7 remain
true in the extended interval structure #*=(I(R*), +, +~, x, x~, €, =)
defined above. In Section 8 we briefly discuss a possibility for the validity of all
these properties.

6. The interval spaces X =(#, +, x, S), X *=(X* +, X, €

In this section we consider an extension of the definition domains of the
interval-arithmetic relations and operations from I(R) into the set # ={[a, b]|a,
beR}=R? of all ordered couples of real numbers [14]—[19], [31]. The first
component of A€ ¥ is denoted by a~ or A~, the second one by a* or 4%, so that
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A=[a", a*]=[A", A*]. The elements of # are called generalized intervals; a
generalized interval A=[a", a*]e ¥ is a proper (regular) one if a~ <a*, and
improper one if a” 2a* (degenerated intervals with a~ =a* will be considered
both as proper and improper). The set of all elements of , which are proper
intervals is equivalent to I(R) and is further denoted again by I(R); the set of all
improper intervals is denoted by I(R), so that  =I(R)ul (R). Define for
AeX\T, T =202, Z={A|a* S0Aa~ 20}

+, if 0<a™, 0<a*;

a(A)={
—, if a= 20, a* £0 (but A#[0, 0)).

The interval arithmetic structure ¥ =(5#, +, x, <) is obtained by extending
the definition domains of +, x and < as defined in & from I(R) to /. A formal

substitution of I(R) by & and of Zby J in (2)—(4) yields the definitions of +, x
and < in J#:

A<Be(b™Za )ANa* £b*), for A, Be#,

(22) A+B=[a"+b", a* +b*], for A, BeX#,
[a=o® bo), go® ped] for 4, BeH\T,

23) AxB=<[a’b7? a’b’), 6=0(A), for AeX\T, BeT,

[a~2b% a’b’), 6=0(B), for AeJ, BeH\T.

Using the above definition of ,,=*“ we can write Z={A4 €l(R)|A<0}. In
addition, let us assume [17], [31] the following extension of (5), which
accomplishes the definition of A x B for the situation when both 4, BeJ :

[min{a” b*, a* b~ }, max{a” b, a* b*}], for A, BeZ,
(24) AxB= {[max{a”b”, a*b*}, min{a~ b*, a*b”}], for A, BeZ,

0, for AeZABeZ or AeZA\BeZ.

From (23) for A=[a, a]=a, Be ¥, we have a.B=[a, a] x B=[ab™ @, ab°®].
Substituting a= —1 we obtain (—1)x B=—B=[—b*, —b~]. The compound
operation A+(—1)xB=A+(—B)=[a"—b*, a*—b"], for A, Bes# is an
extension of the &-subtraction (7) into ¥ and will be further denoted A—B.

The substructures (&, +, ) and (#\J, x, ) of X are isotone groups [17],
[19]; hence there exist inverse elements with respect to the operations (22) and
(23). Denote the inverse additive element of A €5 by — , A, and the inverse element
of Ae#\T w.r.t.“x” by 1/,A. For the inverse elements we obtain the end-point
presentations —,A=[—a~, —a*],fordeX,and 1/, A=[1/a",1/a*],for Ae ¥ \T .
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The inverse additive element —,A=[—a”, —a*] in X should not be
confused with the negative element — A4 obtained by multiplication with —1,i.e.
—A=(—1)x A=[—a*, —a~] Using the monadic operators —A=[—a*, —a~]
and —,4A=[-a~, —a*] we can compose the monadic operator
—4(—A)=—(— ,A), which is called [17, 19] conjugation and is further denoted by
A or A_. We can write

(25) A=A _=—,(-A)=—(— A)=[a", a"].

Note that conjugation in S is a compound operation derived from the basic
operations +, x and their inverse elements.

Equalities (25) suggest to check if there exists a monadic operator y(A) in
H#\J which possibly satisfies the relations 1/, y(4)=1v (1/,A)=A. Itis easy to see

that such is the unique operator y(4)=1/,A=1/,A=[1/a*, 1/a”), for Ae ¥ \T ;
denoting y(A)=1/A4 (since y(A) is an extension of 1/4 for AeI(R)) we have
(26) 1/,(1/A)=1/(1/ ,A)=A4.

We can now compose the operation A x(1/B) for Aex, Be#\J . This
operation, which will be further denoted by A/B, is an extension in J of the
& -operation A/B defined by (6):

[a=*®/poA) goB/p=o )] for A, BeH#\T,
A/B=Ax(1/B)= {
[a™%/b~% a®/b~?%), 6=0a(B) for AeT, Be ¥\T.

From A= —(—,A) and A=1/(1/,4) (see (25) and (26) above) we obtain the
following easy-to-memorize expressions for the invarse elements: —, 4= —A4,
1/,A=1/A. The inverse elements —,A, 1/,A generate operations A+(— ,B),
Ax(1/,B), which are inverse to the operations A+ B and A x B, respectively.
Denoting these two operations by A—,B and A/,B, resp, we have

A— ,B=A+(—,B)=[a"—b~, a*—b"*], A, BeX¥,
A/,B=Ax(1/,B)
[a~°®)/b=oAW, go®po) 4 Bed\T,
B { [a~%/b®, a®/b%), 5=0(B), A€, Be¥\T.

The inverse operations can be expressed by means of the conjugation (25) in
the following way:

A- ,B=A+(-B)=A-B,

A/,B=Ax(1/B)=A/B.

From the last equality we obtain A/B=A/,B=A4/,(— ,((—1)x B)), showing
that the operation for division “/” can be composed by means of the operations
“+7”, “x” and their inverse operations —, and /, (alternatively to the situation in

20 Mathematica Balkanica, 3, 1992

~ S
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& where “/” is an independent operation). Since division “/” in J can be derived
from operations (22)—(24) and their inverse the symbol “/” should not be
necessarily included? in the set of basic operations in X, resp. in the notation for
=¥, +, x, S).

Summarizing, the interval space X" =(, +, X, <) involves the operations
subtraction “—", division “/”, conjugation and the inverse operations 4 —B,
A/B. Other useful compound operations are A+ B and A x B; their end-point
presentations are resp.: A+B=[a" +b*, a* +b”] for A, Be#, and

[a—a(B) ba(A)’ aa(B) b—a(A)] for A, BE.#\H.,
AxB={[a b’ a® b™%, d=0(4), for AeX\T, BeJ,

[a~% b~% a® b%), 5=0(B), for AcJ, Be#\J (note that o(B)=o(B)).

More generally, denoting A_=A4, A, =Afort,s,e{+, —}, we can write (22),
(23) in the form

27 A,+B,=[a""'+b7" a'+ b7, for A, BeK#,
[a”te®B pso ) glatB) pso( ] for 4, BeH\T,

(28) A,x B,=< [a?b™*, a?b%), =0(A), for AeH#\T, BeT,

[a b, a¥b%), 6=a(B), for AeT, BeX\TJ.

Formulae (27), (28) allow to compute the following expressions: A+ B,
A+B, A+B, A+B, AxB, AxB, AxB, AxB.

By analogy with A— ,B=A—B, A/,B=A/B we may denote A+,B=A+B,
Ax,B=AxB. Then A+B=A+ ,B,AxB=Ax ,B.

We next summarize the main properties of the interval structure X =(5¢, +,
x, €) (see [17], [19]). If not specified A, B, C,... denote elements of . With one
exception (KS. 1)) all properties can be found in [19].

K1l. A+ B=B+ A, AXx B=Bx A.

K2. (A+B)+C=A+(B+C), (AxB)xC=Ax(BxC).

K3. X=[0,0]=0 and Y=[1, 1]=1 are the unique neutral elements with
respect to addition and multiplication; that is,

A=X+AoX=[0,0]; A=Yx AoY=[1, 1].

K4. Every element AeJs# has an unique inverse element with respect to +
and every element Aes#’\J possesses an unique inverse element with respect
to x. These are the elements — A4, resp. 1/4, i.e.:0=A+(—A)=A—A4 and
1=Ax(1/A)=A/A.

2 This fact has been possibly not noticed by E. Kaucher who is using a notation for X" of the
form (.*’, +, X, /’ g)
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KS. i) For A4, B, C, A+ BeX¥'\J (sce Proposition 1 below)
(A+B)x C=(A4 X C soiyo0a+B) +(BX Coiroa+8);

ii) For A, B, CelI(R) we have A(B+C)<= AB+ AC.

iii) For A4, B, CeI(R) we have A(B+C)2AB+ AC.

K6. Let * e{+, —, x,/}. Then X=X, =X * C<X, * C. As a corollary we
have X< X, YSY =X*YcX *7Y,.

K7. o is a lattice w. r. t. =. The lattice operations w. r. t. < are the
intersection (the meet) and the connected union (the joint) of two X -intervals:

inf_ (4, B)=[max{4~, B™}, min{4*, B*}]=[AAB],

sup. (4, B)=[min{A4~, B~}, max{4*, B*}]=[AvB].

The lattice operations satisfy the following properties

i) For A, Be# :(AvB)+ C=(A+ B)V(B+C), (AAB)+ C=(A+ B)A(B+C)

ii) For A, Be#\J (AvB)xC=(AxBWBxC), (AANB)xC=(AxB) A
(B x C).

K8. Conjugation satisfies the following properties
A+B=A+B, AxB=AxB, ANB=AAB,
A+A=a"—a* eR, AxA={a" a*,if Ae#\T ;0,if AeT}
K9. For A, Be#\J, 1/(A x B)=(1/4)x(1/B), 1/(A/B)=B/A.
Proposition 1. We have for A, B, C, A+ Be#\7,
(AxC)+(BxC) if a(A)=0(B) (=0(4+B)),

(A+B)xC= {(AxC)+(BxC) if o(A)=—o(B)=0(A+B),
(AxO)+(BxC) if a(A)=—a(B)=—0o(A+B).
Proof. Using the definitions for multiplication and addition, we obtain
(A+B)xC=[(A+B)", (A+B)*1xC=[(A+B)™"© C~74*P, (4+B)© C***P]
=[(4~"© 4 B~O) C~4+B) (47O | B=(O) ColA+B)]
—[A~9O C9U+B) | B-oOCo(A+B)  o(O) Col4+B) 4 Ba(©) CalA+B]

Computing in a similar way the expressions in the right-hand side of
Proposition 1 we obtain the proof.

The interval structure X" can be extended in the outlined in sections 4 and 5
manner by infinite intervals. The structure X* thus obtained is considered in
detail in [9], [14] and will not be discussed here.




298 S. M. Markov

7. Generalized and directed intervals

For nondegenerate intervals define the operator 7:3#\R—{+, —} by
(A)={+, if AeI(R); —,if AeI(R)};for degenerate intervals ([, a]) can be either
+ or —. Using t we obtain for A€ the presentation A=(t(4), A,,), where
A)e{+, -}, A={4, if t(Ad)=+; A, if 1(4)=-}el(R). Obviously,
A={(+, A), if AeI(R); (—, A), for A€I(R)}. A couple of the form (+, A4), A€I(R),
will be further referred as directed interval. The sets # and {+, —} x I(R) are
equivalent and we shall seek relations between the spaces ¥ and & and between
A and #, respectively. The next three propositions show how in certain cases the
X -operations +, x and the X '-relation < can be interpreted in & in the
situation t(4)=1(B). Define the center of a generalized interval Ae¥# by setting
again u(A)=(a” +a*)/2. Further for AeX# define w(4)=|a*—a"| and for
A#[0, 0] define y(A)={a"/a* if 0<t(A)u(A); a*/a" if 0> 1(A)u(A4)}.

Proposition 2. For A, Be #, such that 1(A)=1(B)=t we have

(29) A + B = (T, A:(A) + BI(B))‘
Proposition 3. For A, Be #, such that 1(A)=1(B)=t we have
(30) A X B = (T, A'(A) X Bt(x)).

Proposition 4. For A, Be )#, 1(A)=1(B) we have

A<B, if A, Bel(R),
AEBH{
A2B, if A, BeI(R).

Remark. In the situation t(4)#1(B) we can not obtain similar correspon-
dences between X" and . However, propositions 2—4 can be generalized to give
afull correspondence between X and .# covering all possible cases. We shall thus
show that ¥ and .# are in certain sense equivalent extensions of %, inspite of the
fact that the extended interval spaces X  and .# are obtained in completely
different ways. Recall that X" is obtained by:i) a generalization of the concept of
interval (i. e. by an extension of the support I(R) of & into the set )’), and ii) by an
extension of the definition domains of the operations for addition and
multiplication and of the relation for inclusion from I(R) into 3. On the other
side # is obtained by introducing two supplementary interval-arithmetic
operations and a new relation, using thereby the conventional concept of interval
{i. e. element of I(R)).

The #-operations + ~, x ~ and the relation < can be extended from I(R)
into o similarly to the extension of +, x that is by formally substituting I(R) in
(10), (11), (12) by o and Z by 7 (in the case 4, Be 7 expression (11) is extended by
(?4) where min and max exchange places).

The extended operation + ~ in X" can be expressed as composite operation of
v cperafions addition and conjugation in X by




Extended Interval Arithmetic Involving Infinite Intervals 299

A+"B={C, if o4)2w(B); C, if c{A)<w(B)}, C=A+B.

We thus see that the extended arithmetic operation + ~ in 2 is a compound
operation in (5, +, x ) for each one of the two cases w(A4) 2 w(B) and a(4) < w(B).
Note that the operations + and + ~ in I(R) are independent, whereas their
extensions + and + ~ in J¢ are interrelated. Each one of the three operations +,
+~ and conjugation in X can be expressed by means of the remaining two
operations as follows:

A+B={A+"B, if o{A)zw(B); A+ B, if o{4d)<w(B)},

A= (—A)+(4+ A

Similarly the extended operation x ~ in ) can be expressed by the basic
operations in . We have

Ax"B={C, if xA)zxB); C, if yA)<x(B)}, C=AxB,

A=(1/A)x (4 x ~A).

The following propositions generalise formulae (29), (30) and show how any

assertion in X" can be formulated in terms of directed intervals using -ope-
rations.

Proposition 5. For A, Be ¥, we have
T(max m(A’ B)), A ©o(A) + Bt(B)) fOl’ ‘t(A) = T(B),
A+B=
(

t(max (4, B)), A.qy+ Byg) for 1(4)#1(B);
=(T(maxm(A’ B))’ Av(A)+'(Ak(B)Bt(B))’

where max (A4, B)={A, if o(A)2w(B); B, if w(A4)<w(B)}.

Proposition 6. For A, Be ¥, we have

A x B=(t(max (4, B)), Ay x"“"®B,4),

where max,(4, B)={4, if xA)2x(B); B, if x(4)<x(B)}.

Proposition 7. For A, Be ¥, the X -relation A< B is equivalent to one of the
following M-relations (“v” means “or” below):

i) AcB if A, BeI(R);

i) A2B if A, BeI(R);

iii) A2 BvA<BV(A<BAb~ e A) v(A=BAb*€A) if AcI(R), BeI(R).

Remark. The situation Ael(R), Bel(R), A#B, contradicts to the
assumption 4 < B and hence is not possible.

Example. As an example let us transform the X -assertion: “For X,X, Y,
Y, e, XcXAYSY =X+YcX +Y,” into an .#-assertion using Proposition
5 and Proposition 7. According to Proposition 7 we should consider 6%>=36
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subcases. For instance in the subcase X, X, €I (R), Y, Y, €I(R) the above assertion
reads: “For X, X,, Y_, Y, _el(R), XeXAY_2Y,_={X+"Y_cX,+7Y,_Iif
AX)Z(Y ); X+7Y_2X,+7Y,_ifefX)Se(Y,_)}", taking into account that
AX)ZY )=o(X)2a(Y; ) and o(X)Sa(Y, )=>AX)Se(Y_). We can
proceed in a similar way in the rest of the cases. Propositions 2—4 give an
interpretation of the X -structure in the space % only in the situation when
1(A)=1(B). The situation 1(A)#71(B) can not be interpreted in &. A full
interpretation of the space X  is achieved in .# by means of Propositions 5—7.
These propositions show how any result in ) can be formally transferred in 4.
The opposite is also true, since the space .4 has a natural extension in X'.

8. Notes on applications

Finally let us mention several applications of the extended interval
arithmetic structures considered in this paper. The basis of a differential calculus
for discontinuous functions (complemented to so-called segment functions) is
developed in [40] by essensially using the interval arithmetic algebraic structure
(£, +, x), which can be considered as a substructure of &* An interval calculus
for interval functions has been developed in [22, 26] on the basis of the substruc-
ture (I (R), +, + ~, x) and for a class of generalized interval functions (involving
discontinuities and including segment functions as special case) based on (£, +,
+ 7, x) in [2]. A theory of integration has been proposed in [4] founded on the
subspace (£, +, X, /). A method for nonlinear equations has been proposed by
E. Hansen which is essensially based on the space (I (R*), +, x, /).

The spaces #, #*, X', X * can be applied to construct interval-arithmetic
expressions for inner and outer inclusions of ranges of functions or for exact
representation of ranges of monotone functions. To be more specific let us first
briefly outline the application of # for the simplest case of continuous monotone
functions of one variable.

Denote by CM(D) the set of all continuous functions which are monotone on
DeI(R). For a function feCM(D) and X<D denote m(f; X)= {+, if f is
nondecreasing in D; —, if f is nonincreasing in D}. Then for f, geCM(D), m(f;
D)=m(g; D) means that both functions are nondecreasing (isotone) or both are
nonicreasing (antitone) in D ; m( f; D)= —m(g; D) means that one of the functions
is nondecreasing and the other is nonincreasing. Then the following proposition
holds true [27]:

Proposition 8. For f, geCM(D), X< D:
fX)+g9(X), if m(f;X)=m(g; X);

X))+ "g(X), if m(f;X)=—m(g; X),
f(X)— "g(X), if m(f;X)=mig;X);

fX)=g(X), if m(f; X)=—m(g;X).

(1) f+geCM(X)=(f+9) (X)={

(32) f-geCMX)=(/-¢g) (X)= {
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If in addition f, g do not change sign in D, then
f(X)xg(X), if m(|f];X)=m(lgl; X)

(33) fgeCMX)=(fy) (X)= {
f(X)x ~g(X), if m(|f]; X)=-—m(lg|; X),
X)/ g X), if m(|f];X)=m(lgl; X);

X)g(X), if r{|f];X)=—mllgl; X).

Proposition 8 can be generalized for monotone functions which possibly tend

to + oo at the endpoint(s) of D.In this case the interval-arithmetic structure (3, +,
+ 7, %, x 7) should be employed. It is also possible to generalise (31)—(34) for
monotone functions tending to 3 co at an inner point of D (such as the functions
f=1/x,g=—1/x*in D=[—1/2, 1/2]); then the interval-arithmetic structure .#*
should be employed. To this end we may extend the concept of a continuous and
monotone function in the following manner. Let f be continuous on the set
D=[d~, d*\{d}=[d~, d)yud, d*], where d~<d<d®. Assume that
lim,_,, .qaf (x)€{— o0, 0},and lim,_,,>4f(x)e{— 00, c0}. In such case we say that
is defined and continuous at d (and, therefore on D) and write, according to the
particular situation, f(d)=o0, f(d)=— o0 or f(d)= o0 =(c0, — c0). Similarly,
we extend the concept of monotonicity. Let f be defined in D. By definition, f
is monotone at x, d” <x<d*, if f(x)=+o00. Assume that xeD is such that
f(x)¢{— o0, 00, + c0}. We say that f'is monotone at x if there is a neighbourhood
of xsuch that fis monotone in it in the usual sense. For example, the function 1/x
is monotone in [—1, 1], but 1/x? is not monotone in [— 1, 1] ; the function tg x is
continuous and monotone everywhere, tgeCM (R).

Relations (31)—(34) can serve for definitions of interval arithmetic opera-
tions. In the situation of standard arithmetic such approach is equivalent to using
(9) whenever inner intervals are considered. However, both approaches are not
equivalent in the case of outer intervals. To be more specific let us briefly consider
a definition of interval arithmetic based on (31)—(34). We do this for the
operations +, +~, —, — ~; the operations x, x 7, /,/” can be defined similarly
(for zero-free intervals).

Definition. Assume 4, Be.#.Let Desf and f, g, f+g, f—geCM(D) and such
that m(f; D)=m(g; D), f(D)=A, g(D)=B. Then

A+B=(f+g) (D),
A—="B=(f-g) (D).
Let now m(f; D)= —m (g; D)under the remaining assumptions. Then
A—B=(f-g) (D),
A+ "B=(f+g) (D).

We can now check that (9) from one side, and (35), (36), from the other side,
produce same endpoint expressions for the standard operations +, — in the case

(34)  flgeCM(X), g(x)#0=>(f/g) (X)={:

(33)

(36)
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of inner intervals but do not yield same expressions in the case of outer intervals.
For example, for the sum of two outer intervals defined by (35) we obtain

(a7, a*)+<(b7, b*)=(a"+b7,a* +b*),

whereas (9) produces as result R*. This can be explained as follows. Formula (35)
implies that addition of two outer intervals is performed as addition of their
corresponding components:

a=, a*>+<b7, b*)=([a", w]u[— 0, a*])+([b, ]U[— 0, b*])

=(la”, ]+[b7, w])u([— o0, a*]+[— o0, b)),
whereas according to (9) we have
a=,a*>+<b7, b*)=([a", ©]u(+ o, a*])+([b~, w]u[— o, b*])
=(la7, ] +[b7, w])u([~ o, a*]+[— o0, b*])u([a”, 0] +[— 0, b*])
U([— o0, a*]+[b~, ]).

This shows that interval-arithmetic operations can be defined by (31)— (34).
Normalization of outer interval results by overlapping causes problems both for
the algebraic theory and for the applications. Indeed, for one thing the failure of
the associative law is due to normalization. On the other side normalization
causes difficulties for getting exact expressions for the ranges and leads to rough
inclusions. A simple way to overcome this problem is to generalize the concept of
interval by considering intervals over Jinstead of intervals over R. Recall that an
interval over J (as an ordered set w. r. t. <) with “endpoints” A4, Be3, A<B
according to the algebraic definition of an interval [3] is the set of i-intervals
{Xe3J| A< X < B}.Let us limit ourself to the special case when the endpoints are
degenerate intervals A~, A* and consider intervals of the form
{Xe3J| A~ £ X <B*}.Using for such intervals the previous notation A=[47, A*]
we arrive to the same arithmetic as the arithmetic in 3. Using this concept of
interval in the definition of outer intervals, by setting

(A=, A*>=[A", 0]u[— 0, A*]|={XeI| A~ S X}U{XeJ| XS A*}

we see that overlapping by outer intervals does not need normalisation.

The theoretical tools and the applications mentioned above can be reformu-
lated in terms of generalised (or directed) intervals considered in sections 6, 7 of
the present paper. For instance, relations (31) —(34) have a simple analogue in the
case of generalised intervals. Let feCM(X) and let f[X]=[f(x"), f(x*)] be the
directed range of F (see introduction) Then the following analogue of
Proposition 8 holds true.

Proposition 9. For f, geCM(D), X< D:
S+9eCM(X)=(f+9) [X]=[X]+g[X];
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S~ geCM(X)=(f—g) [X]=fX] - g[X].

If in addition to the above assumptions f, g do not change their sign in D,then

JaeCM(X)=(f9) [X]=S[X]oisxn % 9[Xogxn 5
flgeCM(X), g(x)#0=>(f/g) [X] =f[X]a'(f(X))/g [X:]a(o(x»s

wherein o( f(X))=a( f[X]) is the sign of the interval f(X) (or of the directed
interval f[X], which is the same), that is the sign of f on X.

Propositions 8,9 can be further generalized for functions of many variables in
a direction discussed in [7].
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