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Abstract

This paper is devoted to identification of models and their parameters
applied to ecological and biological problems. More precisely we discuss in-
terpolation and curve fitting in the presence of uncertainties in the input data
given in the form of intervals. Our methods involve model functions linear or
nonlinear in their parameters. The linear models are formulated in terms of
interval arithmetic allowing the computation of verified bounds for the inter-
polating/approximating functions. Case studies involving enzyme-catalysed
reaction and fitting of a logistic model are considered.
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1 Introduction

In the last decades the rapid interaction between mathematics and biology is widely
recognized. This interaction takes place in two opposite directions: i) biological and
ecological problems require and generate new mathematical results, methods and
theories; ii) new mathematical results are implemented in biological and ecologi-
cal research, in modelling and control of the environment; this new mathematical
methods and theories influence biological research. Therefore both mathematics and
biology benefit from this interaction.

The beginning of the 20th century was marked by important contributions in the
field of mathematical populational biology. Later on substantial applications of
mathematical methods in biochemical kinetics, ecology, neurophysiology etc. marked
the road of mathematical biology [11]. Recently many international biomathematical
conferences are organized. Let us mention the international biomathematical con-
ference in 1995 in Sofia [29], [30]. The Third European Conference on Mathematics
applied to Biology and Medicine held in Heidelberg, Germany (6–10 October, 1996)
gathered over 350 researchers applying mathematics in: Modelling in Molecular Bi-
ology, Molecular Biomechanics, Evolution and Genetic Modelling, Metabolic Mod-
elling, Cell Modelling and Cell Signalling, Morphogenesis and Pattern Formation,



Epidemiology and Immunology, Neuromodelling, Physiology, Pathological Tissue
Growth and Cancer, Modelling in Medicine and Applications, Population Dynam-
ics, Ecology. The conference was a forum for the world-wide recognition of the
powerful new interdisciplinary field of mathematical biology. Two scientific contri-
butions from Bulgarian scientists have been presented [21], [24]. From 30th June
to 3rd July the First Congress on Mathematical models and methods applied to
biology and medicine will take place in Alicante, Spain. From 27 to 30 of August
an international conference on deterministic and stochastic methods in biology will
take place in Sofia. Biomathematics is becoming a more and more active field of
research.

In particular, mathematical metods and models penetrate in ecolocical sciences [6].
Many problems of mathematical modelling in ecology need specialists in subjects
like plant metabolism, ecosystems, ecotoxicology, global changes of climate and flora
etc. Classical models of photosynthesis, heat transfer in plants and space dynamics
of wood and plant ecosystems are used in the prediction of global climatic changes
and show that the study of plant species and the related ecosystems is of substancial
significance for the preservation of the environment. Thus mathematical modelling
of plant and soil metabolism prove to be of big importance for the study of soil
polution and related time bomb effects. The mathematical models of metabolism in
living systems and enzyme kinetics enrich both the mathematical theory of chemical
kinetics and the methodological concepts of biologists with respect to biochemical
processes in organisms and systems. For instance, the mathematical modelling of
egrosystems as a living system is an actual and important field of research at present.

Two basic problems of mathematical modelling are: identification of models and
identification of parameters of the models. In biology we often need to solve a prob-
lem for identification of the model, without having a firm theoretical background
related to the form of the model. In such situations the researcher is in the position
of G. Galilei when rejecting the linear form of the free fall law and suggesting a
better model — the quadratic one, far before the theoretical background has been
formulated (in this example — the Newton all-space attraction law). The impor-
tant problem of discovering basic biological relations needs proper mathematical
tools. Thus, besides of the development of particular mathematical theories (like
mathematical enzyme kinetics, mathematical genetics, mathematical populational
and evolutional biology etc.), biological research stimulates the development of new
mathematical techniques and methodologies, excersizing global interaction both on
the computational practice and on the techniques for reading off experimental data.

The purpose of this work is to discuss and make available certain new mathematical
methods related to model identification and their possible application to biology, and
in particular, to ecology and botany. Such new methods have been developed under
the pressure of solving highly sensitive problems (such as problems related to enzyme
kinetics, see [11], [2]) and of the necessity to operate with data containing heavy
uncertainties, combining the lack of statistical hypothesis and the presence of short
series of experimental data. Some new methods developed by the author and his
collaborators and certain algorithmic and software tools that can be used in relation
to these methods are reported. We also give some hints for a new methodology of



collecting experimental data that goes hand by hand with the discussed methods.

For model identification of biological processes involving both short uncertain records
and unstable solutions (as is usually the case whenever enzyme reactions are present),
it seems that several deterministic mathematical theories and numerical approaches
will play major role in the near future: differential inclusions, set-valued analysis,
viability analysis, interval analysis and numerical methods with result verification.
Such tools are quickly penetrating in biological applications [1], [4], [5], [8], [12]–
[14]. For the successful application of these mathematical tools and methodologies
we need suitable supporting programming tools. Special languages, such as SC- and
XSC-languages, have been developed to support the design of numerical methods
with verification. Computer algebra systems have been developed to provide suitable
support for qualified mathematical applications, such as Maple and Mathematica.

2 Model and parameter identification under un-

certainties

The mathematical methods discussed below are tightly connected to specific ap-
proaches of collecting and reading off experimental quantitative data in the form
of intervals. The experimental scientist should make some additional effort in the
process of collecting data from biological experiment/observation by providing in-
tervals that contain the true values of the measured/observed quantities. A careful
consideration of the measured quantities and of the physical construction of the
measurment tools is of immense importance for the new methodology. We recom-
mend the assigning of three types of intervals to each measured/observed quantity:
i) an interval (called the 100%-guarranteed interval) which contains the true value
with absolute guarranty; ii) an interval that contains the true value with “almost
full guaranty”, and, iii) an interval that contains the true value with high proba-
bility. The intervals from second and the third cases can be called conditionally
X%-guarranteed intervals, where according to the experimental researcher’s “feel-
ing” X may take some specific value, say 99 in case ii), resp. 95 in case iii). After
constructing an algorithm for the solution of the problem, the mathematician can
easily obtain the solution for these sets of input data (the 100%-guarranteed and
the X%-guarranteed data). The comparisson of the different solutions of a model
identification problems can be of big value for the final interpretation and the global
study of the particular biological process.

Typically problems arising in biological applications involve uncertain data in the
form of intervals. One of the simplest problems is interpolation under the assumption
that the values for the dependent variable y contain uncertainties, that is, instead
of numerical values for y we are given intervals Y [3], [9], [23]. In a setting involving
generalized linear modelling functions [2], the problem can be formulated in the
following way [32], [28]. Given:

i) a class of modelling functions Lm(D,ϕ) (called generalized polynomials) defined



for ξ ∈ D ⊆ Rk:

η (λ; ξ) =
m∑
i=1

λiϕi (ξ) = ϕ (ξ)> λ, (1)

where ϕ(·) = (ϕ1(·), . . . , ϕm(·))> is a Chebyshev system of m continuous functions
on D and λ = (λ1, . . . , λm)> ∈ Rm is an unknown vector (in particular ϕi can be
the standard algebraic monomials ξi−1);

ii) input data xj ∈ D, j ∈ J = {1, . . . , n}, n ≥ m, such that xi 6= xj, i 6= j, and
n interval measurements Yj = [y−j , y

+
j ], j ∈ J . Let x = (x1, . . . , xn)> ∈ Rn×k and

Y = (Y1, . . . , Yn)> ∈ IRn, where IRn is the set of n-dimensional interval vectors.

Problem 1 (Interval interpolation): Assume that η(λ;xj) ∈ Yj, j ∈ J . If
η is a model function of the class (1), then these conditions can be written as
ϕ(xj)

>λ ∈ Yj, j ∈ J , or in matrix notations: Φ(x)λ ∈ Y , where Φ(x) is the full
rank matrix

Φ(x) =


ϕ1(x1) . . . ϕm(x1)

...
. . .

...
ϕ1(xn)) . . . ϕm(xn)

 .
For a fixed ξ ∈ D , we denote

η(x, Y ; ξ) = {η(λ; ξ) | η(λ;xj) ∈ Yj, j ∈ J}
=

{
ϕ (ξ)> λ | Φ(x)λ ∈ Y

}
. (2)

Formula (2) defines an interval-valued function η(x, Y ; ·) on D, which presents the
envelope of the set of functions η of the form (1) interpolating the vertical segments
(xj, Yj) , j ∈ J , whenever this set is not empty. We need to compute numerically
the interval function η(x, Y ; ·) in D.

Another typical problem arrising in biological applications is related to the situation
when the data contain uncertainties both from statistical and nonstatistical origin
and when some hypothesis on the statitistical error is available. The statistical
hypothesis leads to the choice of an estimator, e. g. the least-square estimator.
The problem has two variants — fitting and smoothing; below we give a possible
formulation of the fitting problem; the smoothing problem is considered in [33].

Problem 2 (Interval curve fitting): In the familiar situation when the mea-
surements y are assumed to be real numbers, the curve fitting problem involves a
matrix operator H : Rn×k → Rm×n, which depends on x but not on Y , i. e. we
have H = H(x). Denote by φ an operator (called estimator) which maps y ∈ Rn

via H linearly into the parameter space Rm, i. e. λ = φ(y) = Hy. Consider now
the situation where intervals Y are given instead of numerical values y. For a fixed
ξ ∈ D, the ”estimates uncertainty set” [9] is:

ηφ(x, Y ; ξ) = {ϕ(ξ)>λ , λ = Hy | y ∈ Y }. (3)

The problem is to present and compute the interval-valued function (3) in a given
domain for the variable ξ. The function ηφ(x, Y ; ·) is the enveloping function of



the set of solutions of the curve fitting problems (generated by the operator φ)
corresponding to all possible data (x, y) whenever y ∈ Rn varies in the interval
vector Y ∈ IRn.

Problems 1 and 2 are related to the problems of finding (or enclosing) the cor-
responding parameter sets [9]. For example, the parameter set corresponding to
Problem 1 is a convex polytope Λ = {λ ∈ Rm | Φ(x)λ ∈ Y }.

Interval arithmetic: For the presentation of the interval-valued solution functions
(2), (3) we shall use two interval arithmetic operations [10]. By IR we denote the set
of all intervals Y of the form Y = [y−, y+] = {y | y− ≤ y ≤ y+}, where y−, y+ ∈ R.
We define addition of two intervals X, Y ∈ IR by X + Y = [x−, x+] + [y−, y+] =
[x−+ y−, x+ + y+]. Multiplication of an interval X by a real scalar α ∈ R is defined
as the interval with end-points αx− and αx+, symbolically

αX =

{
[αx−, αx+], α ≥0,
[αx+, αx−], α <0.

Given a real valued vector α = (α1, . . . , αn) and an interval valued vector Y =
(Y1, . . . , Yn)>, we can present the set {αy | y ∈ Y } by

α1Y1 + α2Y2 + . . .+ αnYn = αY. (4)

The interval-arithmetic expression αY for the set {αy | y ∈ Y } is short and
convenient; to see this the reader isd advised to compute the end-points of the
interval {αy | y ∈ Y }. In what follows we shall make use of expression (4) to
present and compute the solution functions (2) and (3). Below we discuss some
typical situations of model identification involving linear models.

3 On the identification of linear models in the

presence of uncertainties

Let us briefly present the solutions of Problems 1 and 2.

Interval Interpolation. For m = n the matrix Φ−1(x) is well defined and we have
for (2)

η(x, Y ; ξ) =
(
ϕ(ξ)>Φ−1(x)

)
Y. (5)

For m < n the problem becomes mathematically more difficult; however this case
is of big interest in mathematical modelling. We propose the following method to
compute at a fixed point ξ ∈ D the interval function η(x, Y ; ·): intersect the values
at ξ of all interval functions of the type (5), symbolycally,

η(x, Y ; ξ) =
⋂
Q⊆J

η(xQ, Y Q; ξ) =
⋂
Q⊆J

(
ϕ(ξ)>Φ−1(xQ)

)
Y Q,



where Q = {q(i)}mi=1 is a subset of J of m elements and (xQ, Y Q) are data (x, Y )

reduced to Q, e. g. xQ =
(
xq(1), . . . , xq(m)

)>
and Y Q =

(
Yq(1), . . . , Yq(m)

)>
. If the

intersection is empty then Problem 1 has no solution [28]–[32].

Interval Curve Fitting. Using (4) we can present the interval solution (3) explic-
itly by

ηφ(x, Y ; ξ) = {ϕ(ξ)>λ , λ = Hy | y ∈ Y }
= {ϕ(ξ)> (Hy) | y ∈ Y }
= {

(
ϕ(ξ)>H

)
y | y ∈ Y }

= (ϕ(ξ)>H)Y = Γφ(ξ)Y . (6)

The interval–valued function (6) gives an explicit expression for the exact bounds
for the solution set.

Special case: Multiple linear regression. Let ξ = (1, ξ1, . . . , ξm−1) and assume
ϕi(ξ) = ξi, i = 0, . . . ,m−1, so that η(λ; ξ) = ϕ(ξ)>λ = λ0+λ1ξ1+ . . .+λm−1ξm−1 =
ξλ. Multiple linear regression involves a matrix H = (X>X)−1X> with X of the
form

X =

 1 x11 . . . x1m−1
. . .

1 xn1 . . . xnm−1

 .
Substituting in (6) we have

ηφ(x, Y ; ξ) = Γφ(ξ)Y = (ξH)Y =
(
ξ(X>X)−1X>

)
Y.

4 Model identification: two case studies using eco-

logical data

We shall discuss two examples of model (and parameter) identification problems
under uncertainties arrising in ecology.

Case study 1: identification of logistic type model (Verhulst law). The
logistic model (Verhulst law) which is frequently used in ecology has the form

y =
k

1 + e−r(t−k)
. (7)

An usual technique to fit this model to a given set of data (xi, yi)
n
i=1 is to fit the

logarithm z = lny (which is a linear model) to the data (xi, zi)
n
i=1, where zi = lnyi.

In what follows we shall assume that k is a known parameter. We then compute the
parameters of the linear model z; from these parameters we compute the parameters
of the logistic model. The corresponding formulae are:

z := ln

(
k

y
− 1

)
, a := −r, b := rh;

z = at+ b, r = −a, h = − b
a
. (8)



We are interested in the fitting of the logistic model under interval data. Assume
that instead of numerical values for yi we are given interval values Yi. In this case
we can still follow the above scheme, arriving to a linear fitting of a set of interval
data

Zi = ln

(
k

Yi
− 1

)
, i = 1, ..., n. (9)

Using formula (6) we can find the linear interval function approximating the set
of interval data; the parameter set can be determined, too. Applying the inverse
transformation, we obtain the boundaries of the parameter set of the logistic curves,
resp. the boundaries of the interval logistic function.

It is sometimes possible to obtain observations about monotonicity of the model
function. Such observations may be due either to the preassigned type of the mod-
elling function or to the empirical experiments (or both). In the case of the logistic
model such monotonicity arguments may play important role [27].

Consider the following experimental data of Verhulst growth taken from a realistic
ecological problem. The data are measured at every 30 minutes from t1 = 0.5h to
t2 = 15h:

y =(0.3, 0.3, 0.4, 0.5, 0.6, 0.7, 0.7, 0.8, 1.0, 1.1,

1.3, 1.6, 1.8, 2.1, 2.5, 2.9, 3.4, 3.9, 4.4, 4.9,

5.4, 5.9, 6.3, 6.8, 7.1, 7.3, 7.4, 7.5, 7.5, 7.5).

Suppose that the accuracy of each measurement is 0.2, that is Yi = [yi−0.2, yi+0.2],
i = 1, . . . , 30, see Fig. 2. Using (9) we obtain intervals for z. Then we fit the linear
model (8) to the interval data. Fig. 1 presents the boundaries of the family of all
linear regression functions. Returning to the original coordinate system, we obtain
the set of all logistic functions; the boundaries of this family are given on Fig. 2.

Case study 2: an enzyme-catalysed reaction. This example is devoted to an
enzyme catalysed reaction discussed in [2] (see pp. 347, 425). The measured data
for this example are taken from [7]; s are values of the substrate concentrations and
v are values for the velocity of the reaction at s:

s 0.1970 0.1385 0.0678 0.0417 0.0272 0.0145 0.0098 0.0082

v 21.5 21.0 19.0 16.5 14.5 11.0 8.5 7.0

The model fitted by least-squares is nonlinear of the form v = as/(b+s); some com-
puted values for the parameters using standard techniques are a = 23.6, b = 0.0175.
However this values give no information of how much they are influenced by pertur-
bations in the input data. In what follows we shall assume that the concentrations
s are exact and the velocities v are uncertain but bounded in certain intervals V .
We shall then ask how precise are the computed parameters a, b and how does the
uncertainty reflect on the computed model. Assume that the data for the veloc-
ity v of the enzyme-catalysed reaction are bounded by a magnitude of 0.5; e. g.



V1 = (21.0, 22.0), V2 = (20.5, 21.5), .... , V8 = (6.5, 7.5); in reality such interval
values Vi should be obtained experimentally using the arguments described in the
beginning of section 2. The corresponding interval segments (s, V ) are visualized in
Fig. 4. We consider the problem of finding the envelope of the set of rectangular
hyperbolas of the form v = as/(b + s) (with a, b unknown), interpolating the seg-
ments (si, Vi). This problem has been solved by first linearizing the interval data
by expressing s/v as a linear function of s (Hanes-Woolf plot) and finding the set of
linear functions interpolating the transformed segments (si, si/Vi) whose envelope
is shown in Fig. 3. Fig. 4 shows the enveloping interval function for the interpo-
lating hyperbolic functions. This example shows that for the interval interpolation
problem the intermediate linearization approach causes no additional problems, as
is the case when curve fitting is performed. Recall that the curve-fitted solution of
the original problem does not retain the type of fitting estimator (e. g. least square
estimator), of the corresponding intermediate linearized problem, which implies the
use of more sophisticated methods, like weighted least-squares [2].

Other examples of modern mathematical applications to ecology and botany devel-
oped by the author and his collaborators can be found in [19]–[46].

5 Conclusion

The results and algorithmic tools described above can be used by experimental sci-
entists, for checking hypotheses with respect to the type of the modeling functions.
Our method for interpolation of interval data is simple and can be used for model
identification in biological and ecological applications. The case study discussed
above shows that the method can be applied not only for linear models but also for
certain classes of nonlinear models. It is an open problem to specify such classes of
nonlinear problems and to formulate corresponding numerical tools for them. Com-
puter algebra systems like Mathematica and Maple can deal with interval-arithmetic
expressions and are suitable environments for the development of such packages. Ex-
tensive graphics capabilities allow the user to generate two- and three-dimensional
graphics, which can be useful in the process of mathematical modelling.

A package written in Mathematica [17] for interpolation/approximation under uncer-
tainties has been developed [32]. The package is suitable for mathematical modelling
in biology whenever generalized linear modelling functions are used. Models like the
logistic-Normal model, the rectangular hyperbola-Normal model etc. play an im-
portant role in biomathematical applications [2]. The package offers the possibility
to compute and visualize the interval solution functions (2), (3) as well as the corre-
sponding parameter sets. One can also easily observe individual solution functions,
or to compare different solution functions. If a solution set does not exist for a
particular interpolation problem, then a variety of classes of modeling functions (e.
g. involving different number of parameters or various basic functions) can be used.
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