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1 Introduction

Convex bodies form an abelian cancellative semigroup with respect to addition.
By means of the well-known extension method (used e. g. when defining negative
numbers) abelian cancellative semigroups can be isomorphically extended (em-
bedded) into groups. Clearly, it is more convenient to compute within a group
than whithin a semigroup, where the elements are not invertible in general. Con-
vex bodies and intervals have been increasingly used in set-valued (convex), resp.
interval analysis. The application of the extension method to systems of convex
bodies and intervals has been studied by a number of authors. Our study is
closely related to the work of H. Radstrom [16], where the additive semigroup
of convex bodies is embedded in a group and multiplication by real scalar is ex-
tended in a suitable way so that the group becomes a vector space [16]. Here we
proceed similarly; using the classical extension method and a natural extension
of the multiplication by real scalar we obtain a more general, so-called g-linear
space, which contains the linear space constructed by H. Radstrém. A simple
distributivity relation is found in the g-linear space.

The paper is structured as follows: Section 2 is devoted to the operation
addition of convex bodies and its algebraic properties. In Section 3 we consider
multiplication by real scalar and its algebraic properties especially in relation to
addition. In Section 4 some properties of the Hausdorfl metric and the inclusion
relation are discussed. Section 5 is devoted to a theorem of H. Radstrom. The
main result — an analogue of the theorem of H. Radstrom producing isomorphic
embedding — is given in Section 6.

In the paper we also present some well-known facts about the algebraic oper-
ations for convex bodies, which may be useful for a better understanding of the
obtained results, although having no direct relation to these results.



2 Addition and Summability

By IE = IE™", n > 1, we denote the n-dimensional real Euclidean vector space
with origin 0. The field of reals is denoted by IR. A convex compact subset of IE
is called convex body (in IE) or just body; a convex body need not have necessarily
interior points, e. g. a line segment and a single point in IE are convex bodies
[18]. The set of all convex bodies (in IE) will be denoted by K = K(IE). The
set of all single points in K will be also denoted by IE, the elements of IE are
sometimes called degenerate elements (of K). In the case n = 1 the elements of
K(IE) are compact intervals on the real line; we shall call them simply intervals.

Addition. The sum of two convex bodies A, B € K (sometimes called
Minkowski sum [5]) is defined by

A+B = {c|lc=a+b acA beB}, A Bek. (1)

Clearly, (1) defines an algebraic operation in K called addition and K is closed
under this operation. For all A, B,C' € K we have

(A+B)+C = A+ (B+0), (2)
A+B = B+A, (3)

A+0 = A, (4)
A+C=B+C = A=B. (5)

The verification of (2)—(4) is straightforward, for a proof of relation (5) see [16].

If B = {b} € E is degenerate and A € K, then we may write A+ B as A+,
and A 4 {—b} is written as A + (—b) or as A — b. Of course, the element —b is
the opposite to b in IE, that is b+ (—b) = 0. A body of the form A = x + B, for
x € IE, B € K, is called a translate of B (by the vector x). Using translates, we
can write (1) in the form

A+B:U(A+b). (6)
beB

Equation (6) gives a geometrical insight for the sum, especially in relation to the
Minkowski difference to be defined next.

Minkowski difference. Let A, B € K. The expression

A*B=)(A-b), (7)
beB

is defined whenever the right-hand side is not empty; it has been introduced for
convex bodies and studied by H. Hadwiger under the name Minkowski difference
4, 5]

Expression (7) defines a partial operation in the set K. If the intersection in
the right-hand side of (7) is empty, then A * B is not defined, we shall denote
this case by A * B = (); alternatively the symbol A * B # () means that the
convex body A * B is well defined by (7).



Note that the right-hand side of (7) is not empty, if and only if there exists
a vector t € IE, such that ¢t + B C A. We shall denote the induced partial order
relation between A and B by:

B<yA<=A*B#0)<= 3t:t+ B C A.

In particular, B C A implies B <j;; A. The following equivalent presentation of
(7) holds

A*XB = {zelE|z+ B C A}, (8)

saying that A * B is the set of all vectors z € IE, such that the translate of B
by x belongs to A. Note the important equality A * A = 0 for all A € K.
From (8) we have for A, B € K [5]

(AXB)+BC A, (9)

Also, we have [5]: (A * B) £ C = A * (B + C); other useful equality is:
(A+B)*B=A.

Summability. For two nonempty convex bodies A, B € K we say that B is
a summand of A if there exists X € IC, such that A = B+ X; of course, X is also
a summand of A. We see from (8) and (9) that, if B is a summand of A, then
A * B is also a summand of A (see Lemma 3.1.8, [18]). In other words, if B is
a summand of A, then X = A * B is a solution of X + B = A, and in this case
inclusion (9) becomes an equality:

(A*X B)+ B = A <= B is a summand of A. (10)

For A, B € K we say that B slides freely inside A, if to each boundary point
a € A there exists x € IE, such that the translate of B by x contains a and
belongs to A: a € B+ x C A. The following proposition gives a geometrical
insight of the relation “B is a summand of A”:

Proposition 1 (Th. 3.2.2 of [18]) Let A, B € K. Then B is a summand of A,
if and only if B slides freely inside A.

Proof. If A= B+ X and a € A, there exists b € B and ¢ € X such that
a =b+x, hence a € B+ x C A. Vice versa, let B slides freely inside A. Let
a € A be a boundary point of A. By assumption, there exists x € IE, such that
a€B+xCA Thenz e A* Band a € B+ (A* B). Hence, the boundary
of A belongs to (A * B)+ B and therefore A = (A * B)+ B. By (10) we obtain
that B is a summand of A. O

Example. Let A, B be the unit square, resp. the unit ball in IE3. We have
B C Aand (9): (A* B)+ B C A. The latter inclusion is strong in the sense
that B is not a summand of A (B does not slide freely in A). The situation does
not change if instead of B we take a ball with smaller radius, unless B is not
degenerate.



The equation A + X = B may have a solution for certain pairs A, B. The
solution X of B 4+ X = A, if existing, is unique. Indeed, by definition, there is a
X € K, such that A = B + X. Assume that X’ € K, with X’ # X is such that
A =B+ X'. Then we have B+ X = B + X', which by the cancellation law (5)
implies X = X', a contradiction.

It follows from (10) that the solution of A = B + X, if existing, is exactly
X=A*B.

Obviously, any summand of a degenerate (one-point) body is a degenerate
body itself. Hence, from X +Y = 0 it follows that X and Y are degenerate
bodies, and Y = —X. In K the equation A+ X = 0 is not solvable if A € K\ [E.

In what follows we shall symbolically denote the partial order relation “B is
a summand of A” by B <y A, or A >y B. “B is not a summand of A” will be
denoted by B «£5 A. From Proposition 1, we see that B <;; A implies B <;; A4;
however, the inverse is not true. In Example 1 we have B <j; A, but not B <y, A.

If A/B € K, then there exist the following possibilities: i) B <y A and
A £, B, denoted B <5 A; ii) A <y B and B £; A, denoted A <y B iii)
A <y B and B <y A, denoted A =5 B; iv) A £s B and B £ A.

If one of the cases i)-iii) holds, we say that the pair (A, B) is ¥X-comparable.
The set of all ¥-comparable pairs is denoted by Ly. Clearly, if (A, B) € Ly, then
at least one of the two convex bodies A * B, B * A is well defined.

In case iii) there exists X € K, such that A = B + X, and there exists
Y € K, such that B = A+ Y. Summing up both equations we obtain A + B =
(B+X)+(A4+Y)=(A+B)+ X +Y,and by (5), X+Y =0, hence X,Y € [E,
Y = —X. Thus, in case iii) A is a translate of B by some X, and B is a translate
of A by —X.

Note that, if A, B € K(IE), (A4, B) € Ly, then for the equations

B+X = A (11)
A+Y = B, (12)

exactly one of the possibilities i)-iii) mentioned above holds true, i. e.:

1) Case B <y A: there exists a unique nondegenerate convex body X € K\ IE
satisfying (11); equation (12) is not solvable.

2) Case A <y, B: there exists a unique nondegenerate convex body Y € K\ IE
satisfying (12); equation (11) is not solvable.

3) Case A =5 B: both (11), (12) are solvable for X, resp. Y, and we have
Y =-XcI.

In IE! the convex bodies are intervals on the real line. In IE! all elements are
Y-comparable, (A, B) € Ly, hence exactly one of the cases 1)-3) is satisfied [9].
If we drop out the condition (A, B) € Ly, in the general case, then we can only
state that:

Proposition 2 For every two A, B € K each of the equations (11), (12) may
have at most one solution.



3 The Quasidistributive Law
Multiplication by real scalar is defined by
axB = {clc=ab, be B}, BeK, aclR. (13)

Recall some properties of (13). For A, B,C € K, «, 3,7 € IR, we have:

vx(A4+B) = yxA+vyxB, (14)
ax(fxC) = (af)*C, (15)

1xA = A, (16)
(a+pB)*xC = axC+pBxC, af>0. (17)

Relations (14)—(16) are easily verified. To verify (17) recall that a subset
C C IE is convex if for x,y € C:

ar+PByeC, a,B5>0,a+p=1.

If Cis convex and x € a* C + 8 * C, then x = awa + Bb with some a,b € C,
hence
p

x:(a+5)<aiﬁa+a+ﬁb) € (a+p)*C.

Therefore a * C + fxC = (a+ ) xC, a, > 0 (note that the inclusion
axC+ BxC D (a+ p)x*C is trivially fulfilled even for nonconvex C').

Relation (17) is not valid for af < 0 and C nondegenerate. However, we
can easily express (a + ) * C in terms of a * C and 8 x C for a8 < 0. Indeed,
using (10), from (17) we have for a >0, > 0: a*xC = (a+ )« C X 3xC.
Substituting o + 8 = A > 0 (and hence A > 3 > 0) we obtain:

AN=pB)xC=XxCEFxC, A>p>0. (18)

Substituting in (18) 8 = —u, u < 0, we have (A + pu) * C = AxC X (—pu) x C,
A > —p > 0 (cf. also [5]), [13, 14]). Using the original notation «, 8 we can write:

(a+p)«C=a*xCE(-pL)xC, a>—-5>0, (19)
which can be written more symmetrically as

[ axCcx(=p)xC, ifaB <0,lal >8],
(a+5)*0—{5*0*(_a)*0, if a8 <0, |af < 8]

Combining relation (17) and the above formula we can write a general expres-
sion of (a+ ) x C in terms of o * C' and (3 * C, which is valid for all «, 5 € TR:

axC+ BxC, if af >0,
(a+p8)xC = axCx(=p)xC, ifaB<0,|al > |, (20)
BxCE (—a)xC, if af <0,|al <|8].



Relation (17) or its corollary (20) will be further refered to as quasidistributive
law.
The following equality is also valid [5]:

vx(AXB)=vxA*~vxB,

showing that an analogue of the first distributive law (14) holds for the Minkowski
difference.

Negation. The operator neg: K — K defined by neg(A) = (—1) x A =
{—a]a€ A}, A €K, is called negation, and will be symbolically denoted by
-A.

For brevity, we denote for A, B € K

A-B=A+ (-B)={a—-b|a€ A, be B}; (21)

the operation A-B is called (outer) subtraction.

We have =(y* A) = (—1) x (yx A) = (—y) * A = v * (—A) for any real v and
Aek.

Remarks. Instead of “—” the symbol “—” is widely used in the literature
on convex, set-valued and interval analysis (see e. g. [1], [7], [17], [18], etc.). It
should be kept in mind that A=A # 0 for A € £\ IE. Since the notation “—” is
usually associated with the equality A — A = 0, for all A, to avoid confusion in
this work we write “=” instead of “—”. Using the symbol “=” we shall also avoid
confusion with the opposite in the extended space of pairs of convex bodies to be
introduced in Section 5. In mathematical morphology the outer subtraction (21)
is called dilatation, whereas the Minkowski subtraction is called erosion [12], [15].

Symmetric bodies. An element A € K is called symmetric with respect to
the origin, if v € IE, x € A, implies —x € A.

The set of all symmetric convex bodies is denoted by Kg. We have Kg =
{Ae K| A=-A}, i e. A€ K issymmetric, if and only if A =—A. For A € K,
the set A—A is called the difference body of A (see [18], p. 127). For A € K, we
have A-A € Kg. Indeed, we have =(A-A) = -A+ A = A-A.

Proposition 3 The following two conditions for symmetricity of A € K are
equivalent:

i) A=-A;

it) there exists Z € K, such that A= Z-Z.

Proof. i) Let A = —A. Assume t € IE and set Z = A/2 + ¢, where A/2 =
(1/2) x A. Using A = = A we obtain -Z = =A/2 —t = A/2 —t. Hence Z—Z =
Z+(—Z)=(A)2+1t)+ (A/2 —t) = A. ii) Assume that A = Z-Z for some
Z € K. Then we have =A = —~(Z-2)=-Z+7Z =7Z-7Z = A. O

The element A € K is called t-symmetric, with center t € IE, if (A —t) € Kg.
In other words, a t-symmetric element is a ¢-translate of a symmetric element.
The latter can be considered as a special case of t-symmetric element, i. e. a
0-symmetric element.



Proposition 4 FEvery t-symmetric conver body A is a translate of its negation
—A.

Proof. Let A € K be t-symmetric. This means that A—t is symmetric, that is
A—t=-(A—t) =-A+t. Thisimplies ~A+2t = A, hence A is a (2t)-translate
of —A. O

Let A € K be t-symmetric, i. e. A —t € Kg. By Proposition 3 there exists
Z € K such that A —t = Z—~Z. To find an explicit expression for Z, fix s € IE
and set Z = (A—1t)/2+s; we obtain Z = A/2+ s, s € E. Thus A—t =Z-Z =
A/2-A/2 = (A-A)/2. We have A —t = (A-A)/2, that is, for any t-symmetric
element A € K, its symmetric translate is (A—A)/2 (by the vector —t).

We shall end this section by proving directly that the terms appearing in the
right-hand side of (20) are ¥-comparable. Due to this fact the expression in the
left-hand side of (20) can be splitted into two terms for any choice of a and 3.
We first prove the following:

Lemma. Let C € £, a € IR, @ > 0. Then

C>axC, if 0<a<],
C<sgaxC, if a>1

Proof. Let 0 < a < 1. We have to verify that a * C is a summand of C,
that is a* C'+ X = C for some X € K. Take X = (1 — a) x C. Substituting
B=1—a>0in (17) we obtain a*C + (1 —a)*xC = (a+1—a)*C = C,
showing that C >y ax C, for a € [0,1]. Let a > 1. We look for Y, such that
axC =Y +C. Taking Y = (o — 1) * C we see that C <y a*C, fora>1. O

The above lemma shows that for a € (0, 1) the equation C' = a * C' + X has
a solution X = (1 —a) *C; for a > 1 the equation C' + X = a * C has a solution
X=(a—-1)xC.

Proposition 5 Let o, S € R, C € K. If aff > 0, then (axC,8xC) € Ly. If
af <0, then (=(axC), BxC) € Ly.

Proof. Let a8 > 0, say o > 3 > 0. We shall show that the pair (a*xC, 5xC) is
Y-comparable, i. e. either axC <y BxC, or fxC <y axC. By the above Lemma
we have that C' and (a/f) * C, a/f > 1 are X-comparable (a/f) * C >y C, that
is C+ X = (a/B) * C is solvable. Then fx C +Y = a* C is solvable, i. e.
axC > xC.

Let now aff < 0. Without loss of generality we may assume that o > —3 > 0.
By the Lemma we have that the pair (C, D) with D = (—a/p)*C = (a/8) % (=C)
is 3-comparable, and (o/3)*(—=C) >5 C. This implies that the pair (=(axC), B*
(), resp. the pair (a* C,=(8* C)) is X-comparable. O

Note that A <; B does imply —A <y =B, but does not necessarily imply
—A <y, B. Due to this fact for some A, B € K it may happen that A * (-B) = ()
and A X B # (), or vice versa, both relations A * B =) and A * (=B) # () may
hold true simultaneously.



Proposition 6 Let (A,—B) € Ly. Then A * (-B) <y A+ B.

Proof. Obviously A * (—(B) is a summand of A+ B. Indeed, if =B <;; A we
have =B + (A * (=B)) = A, hence B-B+ (A * (-B)) = A+ B. If -A <y B,
then =A + (A * (=B)) = B, and hence A—A+ (A * (=B)) = A+ B. O

4 Some Properties of the Metric and the Inclusion
Relation

A natural metric in K is the Hausdorff distance, defined for X, Y € K by
d(X,Y) = max{max,exminyey |z — y|, d(X,Y) = max{max,ecyminyec x|z — y|},
or, equivalently,

d(X,Y) =miny>o{X CY +AxB,Y C X + A B},

where |x — y|, resp. B, is the distance, resp. the unit ball in IE. For a proof of
the equivalency see [18], section 1.8.
The Hausdorff distance satisfies the following properties [16]:

d(A+C,B+C) = d(A,B), (22)
dA* A, A« B) = Md(A,B), A>0. (23)

Inclusion “C” is a partial order relation in K. Inclusion is consistent with the
arithmetic operations in K in the following sense: for A, B,C,D € K, o, 5 € IR:

AcC < A+BcCC+B, (24)
AcC,BCcD = A+BcCcC+D, (25)
AcC,B>DD = A*XBcCC=X*xD. (26)

Relations (24), (25) are known as isotonicity of addition. Relation (26) is
proved in [5]. Scalar multiplication is isotone in the sense that:

ACB<<= A AxACAx*B,AelR.

In particular, we have A C B <= —~A C —B. The following relation is also
formulated in [5]:

(A+B)*X(C+D)D>(AXC)+(BXD). (27)
A special case of (27) is:

(A+B)*£C > A+ (B*CQ). (28)



Denote A\/ B = conv(AJ B) (for the definition of convex hull conv : K — K
see, e. g. [17] or [18]). We have [5]:

(A\/B)+C = (A+C)\/(B+C),
(ANB)+C = (A+C)((B+C),
A\/B)xC = (Ax0)\/(BXC), A(B=0,
(ANB)£C = (AXC)(\(B*XO),

(A+B)* (B+C) D> (AX0)+(BXC0)

Proposition 7 Let for A,B,C e K, A+ B=C and0€ A. Then B C C.

Proof. Equation A+ B = C, that is U,c4a + B = C, means a + B C C for
alla € A. Hence fora=0, B=0+ B C C. a
The next proposition is closely related to Proposition 6.

Proposition 8 Let (A,—B) € Ls. Then A* (-B) C A+ B.

Proof. From Proposition 6 we know that A * (=B) is a summand of A+ B.
If =B <;; A we have -B+ (A * (=B)) = A, hence B-B+ (A * (-B)) = A+ B.
If ~A <y, B, then ~A+ (A * (=B)) = B, and hence A=A+ (A * (-B)) = A+B.
Since A—A > 0, resp. BB 3 0, we have A * (-B) C A + B, using Proposition
7and A * (-B) <y A+ B. O

Propositions 6 and 8 can be generalized for all A, B, for which A * (=B) is
defined (not necessarily (A, —B) & Ly, see [15]).

The system of convex bodies with addition, multiplication by real scalar,
inclusion and metric will be denoted (K,IE,+,IR,*,C,|| - ||). Computations in
this system are hampered by the fact that nondegenerate convex bodies are not
invertible. In the next section we show that this can be overcome by the extension
method.

5 A Theorem of H. Radstrom

Due to (2), (3), (5) the set (K, +) is an abelian cancellative (a. c.) semigroup
with respect to addition “4”. Moreover, the a. c. semigroup is an a. c. monoid
(K, +,0), that is, there exists a neutral element “0” in K, such that (4) holds.

Using the extension method (see e. g. [3], [8], [16], we can embed isomorphi-
cally any a. ¢. monoid (Q,+,0) into a group (G, +); we briefly recall the method
below.

The extension method. Let (Q,+,0) be an a. c. monoid. Define G =
(Q x Q)/p to be the set of pairs! (4, B), A, B € Q, factorized by the equivalence
relation p : (A, B)p(C,D) <= A+ D = B + C. Define addition in G by means
of: (A, B) + (C,D) = (A+C, B+ D).

Yinstead of pairs (A, B) one often uses formal differences A — B



Denote the equivalence class in the group G, represented by the pair (4, B),
again by (A, B), hence we shall write (A, B) = (A+X, B+X). The null element of
G is the class (Z, Z); due to the existence of null element, we have (Z, Z) = (0, 0).
The opposite element to (4, B) € G is denoted by —(A, B). It is easy to see
that —(A,B) = (B, A); indeed (A,B) + (—(A,B)) = (A,B) + (B,A) = (A+
B,B+ A) = (0,0). Instead of (A, B) + (—(C, D)), we may write (A4, B) — (C, D);
we have (A,B) — (C,D) = (A,B) + (D,C) = (A+ D,B + C). The system
(G,+,0,—) obtained by the extension method is an abelian group and is unique
up to isomorphism.

To embed isomorphically Q into G we identify A € Q with the equivalence
class (A4,0) = (A+ X, X), X € Q. Thus all “proper elements” of G are pairs
(U, V), U, V € Q, such that V+Y = U for some Y € K, i.e. (UYV) =
(V+Y,V)=(Y,0).

In an a. ¢. monoid (Q, +,0) the set Qp of all invertible elements form a group
(Qo,+,0,—) which is a subgroup of the monoid (in the case of convex bodies
Qo = IE). Since this subgroup plays important role and includes the neutral
element, we shall sometimes denote a monoid (Q, +,0) also by (Q, Qq, +).

The next proposition shows when an element of G can be presented in one of
the forms (U,0) or (0,V).

Proposition 9 Let (A, B) € Ly. Then

[ (A= B0), if B<s A,
(A,B)—{ (0,-(A % B)), if B>y A.

Proof. By definition, if B <y A, then B + (A * B) = A. Hence, (A, B)
=(B+(A* B),B)=(A* B,0). The case B >y A is treated analogously.

Assume that a multiplication by real scalar “x” is defined on the monoid
(Q, Qu, +), satisfying (14)—(17). The algebraic system (Q, Qp, +, IR, ) is called

a quasilinear system; for more details see [11].

Consider now the extension of “x” into G. A natural definition of multiplica-
tion by real scalar in G is
v*(A,B)=(y*A,vxB), A, BeQ, vy€R. (29)
In particular, for v = —1 we obtain negation in G:
-(A,B)=(-1)%(A,B)=(-A4,-B), A, B 9, veR. (30)

It is easy to see that G is not a vector space under “«” defined by (29). The
possibility to obtain a vector space using other multiplication by scalar (distinct
from (29)) has been studied in [16], where the following operation has been pro-
posed:

yxA,yxB), 720,

[
745 = {(WI*BM*A) ) <0,
(

(

« A,y B), >0,
- { () =B ()= 4), 7 =<0 3

10



Note that (—1) - (A, B) = (B, A) is the opposite in G, i. e. for y € G we have :
(—=1) -y =0; hence y + (—1) -y = 0.

Below we formulate a result by H. Radstrom (see [16], Theorem 1) in slightly
modified form:

Proposition 10 (Theorem of H. Radstrom) Let Q be an a. c. monoid, i. e.
properties (2)-(5) are satisfied. Then:

A. Using the extension method Q can be embedded in a group G, so that any
element A € Q is identical with (A,0) € G. The group G can be chosen so as to
be minimal in the following sense: if G' is any group in which Q is embedded,
then G is isomorphic to a subgroup of G' containing Q;

B. If a multiplication by real scalar “«” is defined on Q, satisfying (14)—(17),
and a multiplication by real scalar “” is defined > on G by means of (31), then
(G,+,1R,) is a vector space and for any real A > 0 and A € Q the product
A+ (A,0) is identical with A A on Q.

C. If a metric d(A, B) is given on Q satisfying: (22), (23) and if A+ B and
Ax A are continuous operations in the topology defined by d, then for (A,B) € G
the function §((A, B),(C,D)) = d(A+ D, B+ C) defines a metric on G, thereby
3((A4,0),(B,0)) = d(A,B). The metric § is homogeneous and invariant under
translation, i. e. forx,y € G: i) 0(A-x, A\-y) = Xo(x,y), A >0, i) d(x+z,y+2) =
d(z,y). Also: §(z,y) = d(z+(—1)-y,0), so that we can put §(z,y) =|| z+(—1)-y ||;
the function || z ||= 6(z,0) is a norm in G, making G a normed linear space.

It is easy to see, that the system (G, +,IR,-, || - ||) is @ normed linear space.

We note that (31) is not an isomorphic extension of (13). Expression (31) is
chosen is such a way that (—1) - a, a € G, is the opposite in G, which does not
produce meaningfull results when multi[plying by negative numbers. In the next
section we use expression (29) to extend the multiplication by scalar arriving thus
to an isomorphic extension of the space of convex bodies.

6 An Isomorphic Extension of the Space of Convex
Bodies

Our next proposition can be considered as generalization of Proposition 10. The
basic idea is to take multiplication by real scalar in the group G according to (29)
and to investigate the obtained algebraic system with respect to distributivity.
As result, we obtain a simple second-distributivity-type relation. We also obtain
that the multiplication (31) used by H. Radstrom is involved in the obtained
system (as composite operation); however, (29) is not involved in the vector
space induced by (31). We shall also incorporate an extension of the important
inclusion relation in the spirit of [6], where this has been done for intervals.

To facilitate the formulation of our main result we shall introduce a brief
symbolic notation for the composition of the operators opposite and negation.

2it is sufficient to demand that multiplication only by nonnegative real scalar is defined, as
done in [16]; however such generalization is not essential
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Recall that opposite and negation are defined for a = (A’, A”) € G as:

—a = (AL A" = (A", A,
(=) xa = (=1)x(AA")Y=((-1)* A", (=1)xA");

the latter formula can be also written symbolically in the form:
—q = _‘(A/,A”) — (_‘14/7 _|A//).

The composition of “—” and “=” in G is called dualization (or conjugation) and
is denoted by a_ = —(—a) = =(—a). For the pair-wise presentation we obtain

a_ = (AL A =(—(A,A")) = (A" A") = (A" -A") = ((—1)xA" (—1)xA").

We extend our symbolic notation as follows: for a € G we write a = a4 ; then
for o € {+, —} the element a, € G is either a or a_ according to the binary value
of o.

The properties of negation, opposite and dualization in G are studied in [11].
It deserves to mention the following property. Let Gy be the image of Qg under
the embedding of Q into G, that is: Gy = {(A,0) | A € Qp}. Then negation on
Go coincides with opposite, and dualization on Gy coincides with identity.

Proposition 11 Let (Q, Qo, +, IR, *) be a quasilinear system, (G, Go,+,—, ) be
the extension group according to Proposition 10, Part A, and multiplication by
scalar “«” be defined on G by (29). Then,

i) the system (G,Go,+, IR, *) is g-linear in the sense that “«” satisfies (14)—
(16), that is for a,b,c € G, o, 5,7 € R: ax(B*c) = (af)*c; yx(a+b) = y*xa+y*b;
1% a = a; together with the following distributivity relation:

(4 B) * Co(atp) = A * Co(a) T B * Co(p); (32)

it) inclusion in G defined by (A, B) C (C,D) <= A+ D C B+ C is isotone
with respect to addition and scalar multiplication, i. e. a Cb<= a+c Cb+¢;
aCb<= A xaCAxb, A€ R.

Proof. Relations (14)—(16) are obvious. To prove (32), note that it is equiva-
lent to

(a+B)*c= (axc+ B*Coa)o(p))o(@)o(atB) (33)

we shall prove (32) in this latter form. Substitute ¢ = (U, V) € G with U,V € Q.
The right-hand side of (33) is:

r=(ax (U, V)+B* (U V)s()oB))o(@o(atB)-

If o(a)o(B) = + (and hence o(a)o(a+ §) = +), using (17) we see that r is
identical to the left-hand side:
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l=(a+p8)x(UV)=(a+p)xU, (a+pB)*V).

Consider now the case o(a)o(3) = —. The right-hand side becomes
r = (ax(U,V)+px*(UV)- ) (a)o(a+B)
= (ax(UV)+px(=V,2U)), (a)o(a+B)
= ((axU,axV)+((=P) * V.(=8) * U)o(a)o(a+p)
= (axU+(=B)*V, axV+ (=) *U)o(a)o(a+s)-

Now we have to consider a number of subcases. Consider, e. g. the subcase
ola) = +, 0(B8) = —, o(a+ B) = + (in this subcase we have « > —f > 0).
Adding the zero term (—3) % (U + V,U + V) = (0,0) to the left-hand side and
using the quasidistributive law (17) we obtain:

L= (a+p)«(UV)+ (=)« U+ V,U+V)
= ((@+8)xU (a+p)«V)+((=B)x U+ (=B)*V,(=B) U+ (=5) * V)
= ((a+8)x U+ (=B« U+ (=B)«V, (a+B) V) +(=B) *V + (=5) xU)
= (axU+(=p)*«V, axV)+ (=p)«xU)=r
The rest of the cases are treated analogously. Part B about inclusion is also
easily verified. a

Relation (32) (or (33)) are called ¢-distributive law. The g-distributive law
can be also written in the form: (a + 8)c = acy + B¢y, with A = o(a)o(a + B),
p=o(B)o(a+p).

The next proposition shows that the linear space from Proposition 10 is in-
cluded in the g-linear space introduced in Proposition 11.

Proposition 12 Let (G, Gy, +, IR, %) be g-linear system in the sense of Proposi-
tion 11, i), and the operation “”: IR x G — G be defined by

Q- C=a*cy), a€R,cegd. (34)
Then (G, +,1R,-) is a linear system.

Proof. Let us check that “” satisfies the axioms for linear multiplication.

1. Let us prove that a - (8- d) = (af3) - d. Substitute ¢ = d,(g) in the relation
ax (B xc) = (aff) x c to obtain a * (B % dyg)) = (af) * dy(z). Using (34) we
have a * (8 - d) = (afB) * dy(g). “Dualizing” by o(a) we obtain a * (8- d)sn) =
(aB) * dy(g)o(a) = (@B) * dy(ga), or - (B-d) = (aB) - d, for all d € G, o, B € IR.

2. To prove the relation v- (a+b) = v-a+~-b, substitute a = ¢, (), b = dy(,
iny*(a+b)=7*a+yxb Weobtain v x (Cs(y) + dy(y)) = 7 * Co(y) TV * do(q),
or ¥* (¢ +d)g(y) = 7 * Co(y) + 7V * do(y). This implies that v-(c+d) =~-c+7v-d,
for all ¢,d € G, v € R.

The relations 1-a=a, (o + ) -c=a-c+ - -cand (—1)-a+a =0 can be
proved similarly. a
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We proved that the system (G, +,1R,-) with multiplication by scalar “” de-
fined by (34) is a linear system, hence, “” is the linear multiplication by scalar
(31) appearing in Proposition 10. From (34) we see that the operation “” is in-
volved in the g-linear system (G, Go, +, IR, %) as composite operation — therefore
the latter can be written in the form (G, Gy, +, IR, *,-). Note that the inverse is
not true — Raadstrom’s vector space (G,+,IR,-) does not involve the natural
extension of the multiplication by real scalar “x”.

The g-linear system (G, Go, +, R, %, C) considered in Proposition 11 can be
also endowed with metric § = d(z,y) and norm || = ||= d(z,0) in the same
manner as done in Proposition 10 Part C. Due to Proposition 12 the linear
multiplication (31) is incorporated in the g-linear system, so that the function
x+ (1) -y =z —y = z-y_ can be constructed in G (here “—” is the opposite
and “=" is the negation in G. We have 6(z,y) =| = —y ||=|| z—y— ||, and
| z ||= 6(x,0). The system (G, Go,+, —, R, *,C,| - ||) thus obtained is called a
g-linear space.

Proposition 11 is a generalization of Raadstréom’s embedding theorem [16] in
the directions: a) no restriction for the signs of the scalar multipliers in the second
distributive law (that is in the quasi- and g-distributive laws) are required (leading
to embedding of cones in Raadstrom case), and b) an extension of the inclusion
relation is given; c) the g-linear space involves the linear space from Proposition
10. Clearly, (29) isomorphically extends multiplication by scalar from Q into
G; briefly, Proposition 11 says that a quasilinear system can be isomorphically
embedded into a g-linear system.

Example 1. It has been shown by H. Raadstom that the system (K(IE), +, IR, )
satisfies the conditions of Proposition 10 and therefore can be extended up to a
normed vector space. Note that the extention of “x” is not a isomorphic, and one
can only speak of embedding of K as a convex cone. According to Proposition 11
and Proposition 12 the system (K(IE), +, IR, *) can be isomorphically embedded
in a normed g-linear space, which incorporates a normed linear space.

Example 2. Another example of quasilinear and g-linear space can be con-
structed from the set Kg of symmetric bodied considered in Section 3. The
subgroup of invertible elements of g is the trivial group {0}. The quasilinear
system of symmetric elements is (Kg,0,+,IR,*). Due to -B = (-1)* B = B
it is easy to check that o« B = |a| * B for B € Kg. Using (13), this implies
a* B ={azx|r € B} = {|ajz | x € B}. By Proposition 11 the quasilinear system
(Ks,0,4,IR, ) can be embedded in a g-linear system, which is a subsystem of
the g-linear system of general convex bodies.

7 Conclusions

Algebraic properties of convex bodies with respect to Minkowski operations for
addition and multiplication by real scalar are studied. It is demonstrated that
the quasilinear system of convex bodies can be isomorphically embedded into a g-
linear system, having group properties w. r. t. addition. The quasidistributive law
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induces in the g-linear system a simple distributivity relation, called g-distributive
law. A g-linear system has much algebraic structure and is rather close to a linear
system and differs from the latter by:

i) existence of two new automorphic operators — “negation” and “dualiza-
tion” — in addition to the familiar automorphism “opposite” (and, of course,
identity);

ii) the distributivity relation (g-distributive law) resambles the usual linear
distributivity law with the difference that the operator dualization is involved.

The g-linear system is endowed with metric, norm and inclusion; it has been
shown that the g-linear space involves the vector space as discussed by H. Raad-
strom.

Some rules for computation in a g-linear space are given in [9]-[11]. In a forth-
coming paper our main results will be formulated in terms of support functions,
cf. [2].
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