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Abstract. We study the wrapping effect associated with validated interval methods for numerical
solution of the initial value problem for ordinary differential equations by introducing a new concept
of wrapping function. The wrapping function is proved to be the limit of the enclosures of the solution
produced by methods of certain type. There is no wrapping effect if and only if the wrapping function
equals the optimal interval enclosure of the solution.

1. Introduction

We discuss the wrapping effect associated with validated numerical methods for
the initial value problem

X

£, %), (1.1)
x(t0) = x° e X°, (1.2)

where t € [y, 1] is an interval on the real line IR, e R",DcR"isan open set,
f:[to, 1] x D - R" and

0 0 =0 0 =0 0 =0T
X =([£1,X1],[£2,XZ],..., -!naxn])

is an n-dimensional interval vector, X° = D. We assume that a solution is sought
in some interval [#g, 7]. A validated interval numerical method either gives a special
notice, or produces an n-dimensional interval function S(h; 1), t € [to, 7] with the
assurance that for every x° € X° a unique solution x(ty, x°; 1) of (1.1)—(1.2) exists
in [to, 7] and x(to, x°;1) € S(h; 1), t € [to,T]. The step size h > 0 is a parameter of
the method. We consider methods that generate an interval enclosure S(k; f) using
amesh {to, 1, ...,1, = t}. To simplify the presentation we consider a uniform mesh
with step size h; however our results are true for a non-uniform mesh as well.
An interval vector Y = ([Xl,yl], [Xz,yz], [Zn,y,,])T is defined as the set

Y={01.y2 .oy e R 1y e[y, 3], i=1,2..,n}
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and it is also represented in the form
Y=y ={yeR":y<y<7}

where y = (3,9, ¥ )7 = (91,92, ... ¥,)T and “<” is a partial ordering in R
defined by

()’1>)’2y---’}’n)T < (21,22,---,2,.)T = y; <z, i=12,..,n

Obviously, the symbol [y,y] denotes an interval vector iff y < y. The space of
n-dimensional interval vectors is denoted by I(IR)". The distance between two
intervals Y,Z e I(IR)" is defined as the Hausdorff distance between Y and Z
considered as subsets of IR” and is denoted by g (Y, Z).

The set-valued function x(to, X%; 1) = {x(t(),xo; H:x%eX 0}, t € [to, f] (which is
not necessarily an interval), is called a solution to problem (1.1)—~(1.2). For every
t € [t, ] we denote the optimal (tightest) interval containing the set x(to, X°; 1) by
[x(to, X°; )). The interval function

[x(to, X5 )1 ¢ [t0, 7] — I(R)"

is called optimal interval enclosure of the solution (in [ty,7]). A validated interval
method produces interval functions S(k; t) such that [x(ty, X%; )] < S(h; 1). Naturally,
convergence of the form

pﬁmn=Mmﬂm]

is desirable. However, in some cases such convergence is not observed. This is
demonstrated in the following example.

EXAMPLE 1. Consider the problem

X = —2x, x10) =x) e XP =1+ [—e, &,
=20 —-x3, x00)=x)eX)=1+[—g, el (1.3)
X3 =2x1 — x9, x3(0) = x(3) € Xj(;) =1+ [~&, €]

in the interval [0, 1]. We apply a method based on the Taylor series of the solu-
tion with local approximation error O(h%). In every interval [#, ;] the already
computed enclosure S(k; t;) is considered as an initial condition and we have

o (Sthi 0, [x(t, S, 00:1)]) = O), 1€ [t tian].
For
& = 0.2, & =8&= 0.05 (1.4)

the optimal interval enclosure and enclosures computed for three values of k are
visualized in Figure 1 (the enclosures for x; and x3 coincide). While the numerically
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Figure 1.  Problem (1.3) with g1 = 02, &, = &3 = 0.05. Optimal enclosure and enclosures
computed numerically for various step sizes h.

computed enclosures for x| are visually indistinguishable from the optimal one, the

computed enclosures for x, and x;3 clearly diverge from the optimal enclosure when

reducing the step size. Increasing the order of local approximation is of no help.
However, when the same method is applied to Problem (1.3) with

& = 0, & =&3= 0.05 (1.5)

we obtain a very good approximation of the optimal interval enclosure in all three
variables x;, x;, and x3. The numerical results are graphically represented in Fig-
ure 2. At the top part of Figure 2 the optimal enclosure and the enclosures computed
for various values of 4 are plotted. Since the computed enclosures are very close to
the optimal enclosure they are visually indistinguishable from the optimal one. In
order to see their accuracy the error functions

o (Sih 1), [xito, X% 0)]), i=1,2,3

are plotted on a logarithmic scale at the bottom part of the figure. A rate of conver-
gence, consistent with the expected rate of global convergence O(h*) is observed.

The divergence of the computed interval enclosures away from the optimal
enclosure when h — 0 observed for x; and x3 on Figure 1 is due to the wrapping
effect. A detailed explanation of the wrapping effect will be given below; here
we can say roughly that the latter is manifested as a divergence of the computed
enclosures away from the optimal enclosure when h — O irrespectively of the order
of local approximation. We can see from the numerical experiments with Example 1
that there are problems (like (1.3)—(1.5)) where the wrapping effect does not appear
at all and the computed enclosures behave in a “regular” way, i.e. converge to the
optimal enclosure when /2 — 0.

We shall explain the wrapping effect using L. Jackson’s [3] “propagate and
wrap” approach. Suppose that we can compute the optimal interval enclosure of
the solution in any interval [#, #;+]. Then interval enclosures can be computed by
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Figure 2. Problem (1.3) with &1 = 0, &2 = &3 = 0.05. Optimal enclosure and enclosures
computed numerically for various step sizes h (top) and errors of the computed enclosures on
a logarithmic scale (bottom).

the following procedure which we call Idealized Propagate and Wrap Algorithm or
shortly IPWA:

S(h;1o)
Sh; 1)

X()
[x(t,, S 1) 1)), teltetin], k=0,1,..,n—1. (1.6)

This method has no local error but does not always produce the optimal enclosure
of the solution in the interval [#o, 7]. The solution at # is the set x(¢9, X°; #;) which is
not necessarily an n-dimensional interval. It is “wrapped” by an interval S(h; 1)) =
[x(to, X°; £1)] possibly including in this way extra points called wrapping excess. In
the interval [z, £;] all solutions starting from the points of S(h; ;) are propagated
(including the wrapping excess) and the set x(t;, S(h; 1)); ;) is again wrapped by
an interval S(h; 1;) = [x(t;, S(h; t;); 12)] with certain wrapping excess and so on.
The accumulated wrapping excess at the points of the mesh is what causes in some
cases the blowing of the enclosures as observed for variables x; 3 on Figure 1
and referred to as wrapping effect. In other cases despite the wrapping excess the
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computed enclosures may converge to the optimal one (cf. Figure 2), i.e. there is
no wrapping effect.

Problems associated with the wrapping excess at the points of the mesh are
considered in [7] where coordinate transformations are proposed to eliminate the
wrapping effect. A large number of papers on validated (interval) methods for ordi-
nary differential equations deal with the wrapping effect. Some major developments
in the area are marked in [1], [2], [4], [5], [9]; see also [8] for a recent survey.

A well known case of problems with no wrapping effect is when the function f
in (1.1) is quasi-isotone.

DEFINITION. A function f = (f1,f2, ..., fo)T : [t0,7] x D — IR" is called quasi-
isotone on x if f; = fi(t,x1,x2,...,%,) is non-decreasing with respect to all x;, j # i
foreveryi=1,...,n.

There is also no wrapping effect when the initial condition is a point X° = x° e
R. Problem (1.3)—(1.5) presents another case where no wrapping effect exists.

In this paper we study the wrapping effect by introducing a new concept of
wrapping function. In all cases of wrapping effect convergence of the computed
enclosures (although not to the optimal enclosure) is observed (see the graphs for
x2 3 in Figure 1). Then, if the enclosures do not converge to the optimal one what do
they converge to? We shall prove that the enclosures computed by any method of a
certain type (which will be specified in the next section) converge to a “wrapping
function” and that no wrapping effect exists when the wrapping function equals the
optimal enclosure.

2. The Wrapping Function

We did not make any assumptions for existence and uniqueness of the solution
of Problem (1.1)—(1.2) because a validated method either gives a special notice
or produces guaranteed bounds for the solution and simultaneously verifies that a
unique solution exists [8]. However, in proving (a priori) convergence we need to
make such assumptions. To simplify the proof of the theorems we assume that in
the region [#y, f] x D the function f is

i) bounded: |fi(t,x)| < mj e R, m = (my,my,...,m,)" € R"
i) continuous on f; 2.1)
iii) Lipschitzian on x:
n
Ifit,y) — fi(t,2)| < Zl,ﬂyj -z, AMjeR, ij=1,.,n
j=1

However, all proofs can be carried out under more general assumptions providing
for existence and uniqueness of a solution x(#y, x°; ) in a weaker sense leading to a

continuous function satisfying x(¢) = x° + ft(') f(8,x(0))do, t € [1y,1].
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We also assume that all solutions x(#g, x%;7), 20 € X©, are defined in the whole
interval [z, 7].

DEFINITION. A function X : [p,7] — I(IR)" is said to satisfy a wrapping property
with respect to equation (1.1) at the point 6 € [ty,1) if for every u € X(0) there
exists a unique solution x(8, u; ¢) on the interval [, 7] satisfying (1.1) with x(8) = u
and x(6,X(6);t) c X(¢), t e [0,1].

We consider methods producing enclosures S(#; ¢) satisfying the wrapping prop-
erty at the points of the mesh. We refer to these methods as methods of propagate
and wrap type. The Idealized Propagate and Wrap Algorithm (IPWA) produces the
tightest enclosure S(k; 1).

Since the enclosures produced by methods of propagate and wrap type satisfy
the wrapping property at every point of the mesh we may expect that the limit of
such interval functions when 4 — O satisfies the wrapping property at every point
of the interval [#y, f]. Therefore we define a wrapping function as follows:

DEFINITION. A function X : [t),7] — I(R)" is called wrapping function for the
problem (1.1)-(1.2) if:

i) X(o) = X%
ii) X satisfies the wrapping property at every point of the interval [z, 7);

iil) X(r) < Y(2), t € [y, 7] holds for every function Y : [fy, 7] — I(IR)" satisfying 1)
and ii).

Condition iii) means that the wrapping function is the optimal function satisfying
properties i) and ii). Roughly speaking, the wrapping function is the tightest interval
function which wraps all excess points and the induced solutions through these
points.

The wrapping function of Problem (1.1)—(1.2) is unique. Indeed, if Y and Z are
wrapping functions then the function X defined by X(z) = Y(t) n Z(¢), t € [tp,1]
satisfies the conditions i) and ii) of the definition and X(¢) < Y(), X(®) < Z(®),
t € [to,1]. Moreover, the converse inclusions hold according to iii). Therefore
X(r) = Y(¢) = Z(t). We denote the wrapping function of Problem (1.1)-(1.2) by
X. To prove its existence and further properties the wrapping function X will be
represented as a solution to an initial value problem involving the interval extension
of the function f defined as follows.

Let D = {X € I(R)" : X c D}. A function f* : [ty,7] x ID — I(R)" defined
by

X = (F6X0. 505, .. £0.X)
F10X0 = 605001 = [inf 560, s0p a0, i=1,.,m
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is called interval extension of f (with respect to x). Since the interval extension f*

equals f when X = x e D the use of the same notation does not cause confusion, so
that we denote further f* again by f.

In I(IR)" we define the quantities width w(-) and magnitude | - | for ¥ e I(IR)"

respectively by
W) = Gy =Y. 52 = Yoo Tn = 20
- - — T
Y| = (max{ly, |, |5;[}, max{[y,|, [¥>[}, ... max{ly | [7,1}) "

In I(IR)" we use the interval operations Y + Z, Y, defined for Y,Z e I(R)",
o € IR, by

Y+Z = (Y1 +2Z4, Y2+Zz,...,Y,,+Zn)T, Yi+Zi=[Xi+§i’ y; +zil;
al = (aYy,aYs, ..., a¥)T,

aY; = [min{ay, o3}, max{ay,ay;}l, i=1,...n,
and the inner subtraction of intervals Y — Z, Y, Z e I(IRR)", see e.g. [6], by

Y~ Z =W~ Z,Y2~" Zy,....Y,— Z)T,
Yi =~ Z; = [min{y, — z, y; — 7}, max{y, — z, 5; — Z}].

The distance between intervals Y,Z e I(IR)” can be represented in the form

ceey

where || - || : R"” — IR is the maximum norm in R” defined by
x| = max{|x], |x2l|, ..., |xn]},  x=(x1,%2, ..., %) € R™.

Conditions (2.1) on f imply corresponding properties of the interval extension
. X) = [f(t,X), f(t,X)] of f(t,x) with respect to x. In the region ID the interval
extension f is

i) bounded: |fi(t,X)| < mje R, m=(my,my,...,m,)T € R
ii) continuous on ¢ (which means that f and f are continuous on ¢); (2.2)
iii) Lipschitzian on X in the form:
If(,Y) " ft,Z)| < AlY == Z| where A =(4;)e R™".

We shall also use the following notation. Let ¥ € I(IR)”", then

_Y_[ = (ery Yl’—h)_)i! Yi+l)~~~! YI!)T,
Y = (Yo Y3, Y, o Y
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Let X : [fo,f] — ID be an interval function. The interval operator L is defined
by
L6 (®) - £,¢. X' @), %1 - Fi(t, Y;(t»]
£x@) = | @ = 5@ X20) 20 -HeX O] | ey,

[£.() — £, X"(®), %a(®) — F,(t. X" (1))]
We consider the following initial value problem
LX =0, 2.3)
X(to) = X°. (2.4)

From (2.2) it follows that this problem has a unique solution in some interval {t;, &].
For simplicity we assume ¢ = 1.

THEOREM 2.1.

a) The solution of problem (2.3)—(2.4) is the wrapping function of Problem (1.1)—
(1.2);

b) The interval enclosures S(h;t) produced by IPWA converge to the wrapping
function of Problem (1.1)—(1.2) when h — 0 i.e. IEI_I)I}) S(h;t) = X(@).
Proof. Denote the solution of problem (2.3)-(2.4) by
X(t0, X% 1) = [x(t0, X ), X(t0, X% 1))
We shall first prove the following inclusions
S 1) < X(0) < X(10,X% 1), telty,7], h> 0. (2.5)

The first inclusion follows straightforward from the definition of wrapping function.
We shall use some monotone properties of the interval extension of f to show the
second inclusion. Every component f;(z,X) = lf,(t. X, fi6.X)), i =1,..,n, of
f(t, X) satisfies

fad]

- _ o non-decreasing on x;
(t,X) = £.(t,[x1,x1], [0, %21, ..., [x,., X,,]) 1S . . =3,
LX) = £, (2, 0] Do, %) o 1 Xal) {non-mcreasmg on % }

FX) = Tt Rl Rl 5 is { DorioeeiE o %
Therefore the function g = (g1, £2, ..., g2,) defined in the region
{@y):telto,fl, ye DD, yj+yssj 20, j=1,..,n}
by
8it,y1,y2, - ym) = —f &Y, Yic, =y Yier, ., Vo), i=1,..m,
gn+ilt, Y1, Y2, oY) = Fit, Y1, Yo ynein Yisr 0 Yo), i=1,.,n
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where Y; = [—yj, yu+j1.J = 1, ..., n, is quasi-isotone.
Consider the equation

y=g(ty) (2.6)

A well known property of equations with a quasi-isotone right-hand side is that if
¥(t) and z(#) are two solutions of (2.6) such that y(8) < z(8) for some 9 € [tg,7) then
¥y < =), te [6,7] [9].

Let 6 € [1,1] and let x(6,u;?) be any solution of equation (1.1) satisfying
x(8) = u e X(t9,X°; 0). It is easy to see that the two 2n-dimensional functions
(—x(6,u; 1), x(0, u; 1)) and (—x(to, X°; 1), X(to, X©; 1)) are solutions of equation (2.6).
At the point 6 we have

(— x(8,u;8), x(8,u; 0)) = (—u,u) < ( — x(to, X°; 6), X(t0, X°; 6)).

Therefore (—x(8, u; 1), x(6, u; 1)) < (—x(tg, X%; 1), X(t9, X°; 1)), t € [6,7], which
implies that x(10, X% 1) < x(0,u;1) < X(tg, X% 1), t € [0,7]. Hence

x(0,u; 1) € [x(t0,X°; 1), X(t0, X°; 0] = X (20, X%, 1), te[6,7].

Since the last inclusion is true for every u e X(t0, X% 6) and 6 € [f,7] it follows
that X(to, X°; 1) satisfies the wrapping property at every point of the interval [z, 7).
But the wrapping function is the optimal function that satisfies X(fo) = X° and the
wrapping property at every point of [fo, 7). Therefore X(r) < X(to, X%; 1), t € [to, 7.
This proves the inclusion (2.5).

Now we shall prove that '}1_% St = X(to,XO;t). This together with (2.5)
implies both a) and b) in the theorem.

Let [t #x+1] be an arbitrary subinterval and let t € [f, % +1]. Then S(k; 1) is
defined by S(h; 1) = [s(h; t), S(h; )] = [x(tx, S(h; 1;); 1)] where

s;(h;t)= min xi(t, w;1), F;(ht)= max xi(t,ut), i=1,..,n
_z( ) ueS(hi 1) l(k ) z( ) ueSih 1) l(k )

Using

/tf(e,x(tk, u;0))d8| < (r — ty)m

/3

Ix(te, us 1) — u| =

it can be shown that
|S(h; 1) = S(h; 1) < (¢ — tiym. (2.7)

Every solution x(t;, u; t) can be represented in the form

x(te, u; £)

t
u+/ £(6,x(ty, u; 6)) d6
173

6,u)de 0, ,u;8)) — f(6, de
U+ u-f( u) +/ (f( x(ty, u; 0)) — £( u))

13

o(u) +¢
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where o(u) = u + ft: f(0,u)d6 and

lel

/ t (#(6.3(t, 1 0)) — £(6,1)) del < / tA|x(tk,u; 0) — u|de

t t

t 1 1
< [ AMB6-1t)mde = E(z—tk)zAm < 5hZAm.
I

Therefore for every i = 1,2,...,n we have
1., 1.,
oi(u) — Eh Apem < xi(tg, us t) < @i(u) + Eh Ajm,

where A, is the i-th row of matrix A. Taking the maximum over u € S(k; 6) of
every part in the above inequality we obtain

_ 1 _ _ 1
7 (Sth; 1)) - Eth"*’" <t < 9;(Sh 1)) + Eth,-*m,
which can also be written in the form
1
[3i(h; 1) = 3,(S(hs 1) | < Sh* Aiwrm. (2.8)

Let us note that for sufficiently small # the function ¢ = ¢(u) is such that ¢; is
non-decreasing on u;, i = 1, ..., n. Hence, for the interval extension of ¢ at S(h; ;)
we have

t
P:(Sh; 1)) uer‘rsl(z}l);(tk) {u,- +/tk £i(0, u) de}

t .
ik 1) + / £i(6,8 ' (h; 1)) de. 2.9)
I
Therefore the inequality (2.8) can be written in the form

t .
550 ~ 50— [ £:(0,8'0s 1)) do| < SHAim 2.10)

I

Using (2.10), (2.2) and (2.7) we obtain

Sihi 1) — Si(hs 1) — / 7.(6,8'(h; 0)) do

t .
< §i(h;t)—§i(h;tk)—/ ?i(eagl(h;tk)) d9’
%
| [ (0.5 m) -7, n0)) o)

1 N —i
< EhZAi*m + [ AulS' (h1) — S'(h; 0)|d6
19

1 1
< Ethi*m + 5hZA,‘,,m = h2Ajm.
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Let now t € [ty,f). There exist an interval [¢,,¢,41] such that ¢ € [t,,1,,1],
re {0, 1,...,p—1}. Applying the above inequality for the intervals {ty, 111, [#1, %], ...,
{z,, f] we have

Si(h; 1) — Si(h; o) — / t?i(G,gi(h; 0)) do
o

r—1

<>
k=0

te+1 _ —i
st St - [ 70,50 0) de‘

%

t .
+ 8i(h; ) — Si(hs 1) — / ?i(e,gl(h; 0)) dG' < ph*Aum,
tr
which yields
t N
Si(h; 1) — 8i(h; o) — / 7,(9,31(}1; 0)) de‘ < At — to)Aixm,
o (2.11)
i=1,..n
In a similar way we obtain
t .
si(h; 1) — s;(h; 10) — / £,(6,8'(h; 9)) d9’ < h(t — to)Aim,
0 (2.12)

i=1,...n

It is easy to see that the functions in each of the sets {s(h;-)} and {S(h;-)} are
uniformly bounded and equicontinuous. Then the theorem of Arzeld-Ascoli implies
that {s(h;-)} and {S(k; )} considered as generalized sequences of 4, 1 — 0, have
subsequences {8(hq; )} and {S(hy; )} that are uniformly convergent to continuous
functions s and § respectively. Obviously s < 5. Let 8 = [s, §]. From (2.11) and
(2.12) when h = hy — 0 it follows that

§,.(t)=§,-(to)+/ f,(6,8'@)do, i=1,..n,

fo
t .
B:(0) = 5i(t0) + / 7.(0.5'@)do, i=1,...n,

fo

which implies that § is differentiable and

LS() =0, t € [t, 1],
Sty =X 0.
Therefore S(t) = X(t9, X% 1), t € [to, 7).
Since this is true for any other convergent subsequences of {s(h;-)} and {S(h; )}

then x(to, X%; ) is the only accumulation point of {s(h; )} and (9, X 0:.)is the only
accumulation point of {3(h; -)}. Therefore

lim S(h; 1) = X(t0, X% 0). (2.13)
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This concludes the proof because both statements of the theorem follow from (2.5)
and (2.13). O

THEOREM 2.2. If a numerical method produces interval enclosures S(h;t) of the
solution of problem (1.1)—(1.2) such that S(h; t) satisfies the wrapping property at
the points of the mesh {t, 11, ...,t,} and the local error is

‘S(h; £) = [x(ti S t); )]
then

}%in}) St =X, telt,il

=o(h), telt,tryl, k=0,1,..,n—1,

Proof. Using standard techniques one can show that the limit of S(h; ) is the
same as the limit of S(A, t) and then the statement follows from Theorem 2.1. O

Theorem 2.2 shows that in general the interval enclosures produced by a method
of the considered type do not converge to the optimal interval enclosure [x(fp, X %]
of the solution but to the wrapping function X (). Convergence to [x(ty, X 0.9)] is
obtained if and only if [x(¢p, X %) = )A((t). More precise analysis can reveal that
when [x(to, X°; 1)] # )A((t) the rate of convergence is O(h) irrespective of the rate
of the local approximation while if [x(ty, X%; )] = X(1) the rate of convergence
corresponds to the rate of local approximation.

3. Applications

Using the concept of wrapping function we can quantify the wrapping effect asso-
ciated with problem (1.1)—(1.2) in the following way. Let S(4;¢) be an interval
enclosure of the solution of (1.1)—(1.2) produced by a method of a propagate and
wrap type. The limit of the error of approximation when & — 0 is

lim o (SCh: 1), [x(to, X°; 1)]) = o (X(0), [x(to, X3 1)]).
The guantity
o (X, [x(00, X% 0)]) = || 1X®) = [x(t0, X% 0] | (3.1)

does not depend on the method and characterizes problem (1.1)—(1.2) with respect
to the occurrence of the wrapping effect and its magnitude. Therefore it can be
used as a measure of the wrapping effect associated with problem (1.1)—(1.2). The
vector function

1X(t) = [x(to, X% ]| 3.2)

provides more detailed information about the wrapping effect because its coordi-
nates give the magnitude of the wrapping effect in the corresponding coordinate
directions

1Xi(r) = [xitto, X% 0] = o (Xi(0), [xi(t0, X% 1)]), i=1,...,n.
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Each one of the functions (3.1) and (3.2) may be used in characterizing the
wrapping effect associated with a particular problem.

If X(2) = [x(t0,X%; )] for a problem of the form (1.1)~(1.2) we say that this
problem has no wrapping effect (or: has zero wrapping effect, or: is without wrap-
ping effect) because the enclosures produced by any method of propagate and wrap
type converge to the optimal interval enclosure with a rate corresponding to the rate
of local approximation provided by the method. For a problem without wrapping
effect the functions (3.1) and (3.2) are equal to zero.

REVISITING EXAMPLE 1

The exact solution of the system of linear equations (1.3) is

e 0 0
x0,x% 0 =| 2e~"—e%) cosht —sinht | x°.
2(e~* — e~ %) —sinht cosht
Therefore for the optimal interval enclosure [x(0, X°; )] = [x(0, X%; 1), X(0,X%; 1))
we have
E? e—2t
x(to, X% 1y = | 220" — e )+ xJcosht — X sinh ¢ (3.3)
2x0(e™" — ) — XY sinh £ + xJ cosh 1
and

XOe—Zt
1
X(t0, X% = | 2x0(e™" — e )+ ) coshr — sinht | . (3.4)
2x)(e ™" — e™%) — xJsinht + X cosh 1
The right-hand side of the equation in Example 1 has the following interval
extension
[—2%), —2x;]
f(t) [_E’f])z [2-11 _23’ 2%] _£3]
[2x) — X2, 2% — x]

Therefore Problem (2.3)—(2.4) can be written in the form

X = —xy, X = —2%,
X = 2x) — X3, X = 2% — x3,
X3 = 2% — X, X3 = 2% — X,
x0) =1-—g, i=1,273, x(0) = 1+¢, i=1,2,3.
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The above problem can be solved using standard techniques and its solution
gives the wrapping function X = [x,x], where X(¢) is the vector

)_c(l)e"Zt

(e +3e7 —4e %) — 159! —3e " +2e¥) + x0 cosht — Fsinh ¢ | (3.5)
Lxl(e'+3e™" —4e ) — 1x%(e* —3e " +2¢~%) — X sinh ¢ + xJ cosh ¢,
and X(?) is
f?e‘z’
1x(e +3e " —4e™ %) — LxQ(e' —3e~"+2¢ %) + %) cosh — xJ sinh 1 | . (3.6)
%E?(e’+3e" —4e~ ) — %g?(e’—3e"+2e‘2’) ~ xJsinht + 32 cosht

Using (3.3), (3.4), (3.5), and (3.6) we obtain the measure of the wrapping effect
3.2)

0

et —3e7" +2e7 )Y — x0)

Le' — 3¢~ +2¢72)(x) — xD)
0

= %(e’ —3e ! +2e Mg

%(e’ —3e~ ! +2e Mg

X - x0,x%n)

From the above form of the wrapping effect measure we can make the following
observations:

1. There is no wrapping effect in x) (see Figure 1). This is not surprising because
x1 is obtained only from the first equation and the right hand side of a single
equation is always quasi-isotone.

2. The wrapping effect in x, and x3 depends only on the width of X ?. Therefore
there is no wrapping effect if w(X ?) = 0 (see Figure 2).

On Figure 3, where the computed enclosures for Problem (1.3)—(1.4) are plotted
together with the wrapping function, convergence of the enclosures to the wrapping
function can be observed.

MOORE’S EXAMPLE

The following example is often discussed in literature.
x| = X, x1(0) = x) e X =[-8,8], 37)
x = —x;,  x000) =x0eX=[1-61+36] '

R. Moore showed [7] that at t = 27 the computed interval enclosures are inflated by
a factor of approximately %" ~ 535. We shall obtain this result using the wrapping
function of problem (3.7).
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1.4

1.3 wrap.f. ~o—
DN

12 optimal ———

1.1 -

1 numeric

09 h=0.25 :

0.8 h=0.125 - - - -

0.7 h=0.0625 ——

0.6 _'

0.5

0.4

0.3 I | | |

0 0.2 0.4 0.6 0.8 1

Figure 3. Problem (1.3) with &, = 0.2, &; = &3 = 0.05. Wrapping function, optimal enclosure
and enclosures computed numerically for various step sizes h.

The exact solution of this problem is

cost sint
x(0, xo;t) = ( ) %0

—sint cost
Hence the optimal interval enclosure can be represented in the form

0 : 0
x(0; % 0] = ( (cos DX] + (sin)X; )

—(sinHX? + (cos HXT
and its width is

0 . 0
w([x(0; 2% 1)]) = <|C°St|W(X1)+|Smt|w(X2)>

| sin £|w(X}) + | cos tjw(XT)

(|cost] + |sint]) ( ;,66 ) . 3.8)

Problem (2.3)—(2.4) for system (3.7) can be written in the following form

X = X, x(0) = =4,
X| = X, x1(0) = 4,

X = —Xi, x(0) =146,
Xy = —X1, X(0) = 1+6.
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Solving this problem we obtain the wrapping function X(¢) = [Z(r), X(1)] of 3.7,
for 2x(t) we have

(cos t+cosh t)x1 + (cos t—cosh t) + (sin t+sinh t)x2 + (sint—sinh t)x2
(— sinz+sinh t)g1 — (sin t+sinh t)xl + (cos t+cosh t))_c2 + (cos t—cosh t)x2
and for 2X(t)
(cos t—cosh t)g? + (cos t+cosh #)x; + (sin#—sinh t))_c‘z) + (sin t+sinh t))‘cg
—(sin t+sinh t)g? + (— sinz+sinh t)f(l) + (cos t—cosh t)gg + (cos t+cosh t)?cg )
Therefore
w(X(®) = X(t) — ()
cosh t(xl — X 9y + sinh t(x2 - x2)
sinh t(xl — xl) + cosh t(x2 - xz)

= ( ;g ) (3.9)

From (3.8) and (3.9) we have

et

| cos t| + | sinz|

w(X() = w([x(t0, x°; D]).

Since X is the limit of the interval enclosures when 4 — 0 then these enclosures are
inflated at the point ¢ approximately by a factor of e / (| cos #| + | sin7|) when & is
small enough. At t = 2x the value of this factor is e2”

4. Problems without Wrapping Effect

It is clear from the previous sections that methods of propagate and wrap type can
be applied successfully only to problems where no wrapping effect occurs. In this
section we use the concept of wrapping function to characterize such problems.
Our approach is to find problems of the form (1.1)-(1.2) such that the wrapping
Iunctlon X(t) equals the optimal interval enclosure [x(to, X% D] or equivalently
w(X(0) = w(lx(to, X% 1)]), 1 € [10,7].
THEOREM 4.1. If there exists a diagonal matrix Q = diag(q1,q2,....qn), qi €
{—1,1}, i = 1,...,n, such that the function Qf(t, Qx) is a quasi-isotone function

onxe QD = {Qd d € D} then the wrappzng function X of problem (1.1)~(1.2)
cquals the optimal interval enclosure [x(ty, X°;-)] i.e. there is no wrapping effect.

Proof. Let us note that the linear transformation Q : R" — IR" defined by
Q(x) = Ox, where Q = diag(q1, 92, ..., qx), gi € {—1, 1}, preserves the intervals i.e.
if X € I(IR)" then OX = {Qx : x € X} € I(R)" or in general if X c IR" then

[QX] = O[X]. 4.1)
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where [X] is the optimal (tightest) interval containing the set X and [QX] is the
optimal (tightest) interval containing the set OX.
We consider the problem

y = gy, 4.2)
¥(to) = yo € YO =0X°, (4.3)

where g(y) = Qf(t, Qy) is a quasi-isotone function of y € QD. For the wrapping
function ¥ = @,';7] of this problem we have fori=1,...,n

A

Y = gi(t§@1,§1],--.,Ei_,,i_l],i,., @Hl’/)’_\nl],---,lv)’_\n,z,,]),

Vi = 5,50 B 5is1) 30 B i) 5,5, (4.4)
Wto) = ¥°,
) = ¥°.

Since g; is non-decreasing on y;, j # i, we have fori=1,...,n

&(ty @173’_\1]’ veay [37_\1-_17;\1'_[],3)_\1-, ﬁ—l’+l’§i+1], XY @n!/;n])

= 813, T, 5T, 3
gi(tv [’X\l?;\[]v LERE @i_1’§i—l]’§\i’ [zi+l’§i+l]’ seey Einvi;\n])

= gl(tiil, --'v;\);j_ly’;[)/y_\jq.]y "'7/;\)1)'

Then from (4.4) it follows that Y(¢) = y(to, XO; f) and 3(1) = y(to,yo; t) belong to the
solution y(to, Y?; 1) of Problem (4.2)—(4.3) which implies that

Y(2) = [y(t0, Y% 0] = [y(to, QX% 1)), € [10,7].
For every solution x(t9,x%: 1) of equation (1.1) we have
x(to, x°; 1) = Qy(to, Ox°; 1).
Therefore from (4.1) it follows that
[x(10, X )] = [Q¥(t0, 0X°; D] = Qly(t0, QX°; ] = QY (0). 4.5)

It remains to prove thatAQlA/ is the wrapping function of Problem (1.1)-(1.2).
At 1 = 1o we have Q¥(t0) = Q°X° = X°. Let 0 € [19,7) and let u € QY(6). Then
Qu e Y(6) and

x(0,u;1) = Oy(0, Qu; 1) € QY (1), te[6,7],
i.e. QY satisfies the wrapping property at every 6 e [1, f). Therefore

[x(to, X% ) < X(©) € QY (1), ¢t € [to, T).
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Then (4.5) implies

[x(t0. X ;)] = X(1) = QY (), 1€ [10,7),
which concludes the proof of the theorem. a

Considering again Example 1 and Moore’s example we can see that Theorem 4.1
is not applicable to either of them because a matrix Q with the required properties
does not exist. Theorem 4.1 is applicable to the following example.

EXAMPLE 2. Consider the problem

X = —2x1, x1(0) = x? € X? =1+[—¢, el
jjz = le — X3, x2(0) = Xg € Xg =1+ [_EZy 82]’ (46)
X3 = =20 —x, x300) = 2 e X =1+ [~s&3,83),

in the interval [0, 1]. The function

—2x
f(x)=< 2x —x3 )
—2)61 — X2

can be transformed into a quasi-isotone function using a matrix

10 0
g=101 0 |].
00 -1

Indeed,

—2x;
Of(t, Ox) = <2xl +Xx3 )

le + X7

is quasi-isotone. Then from Theorem 4.1 it follows that problem (4.6) is a problem
without wrapping effect for any initial condition X° e I(IR)". This theoretical result
is consistent with our numerical experiments. Consider the values of ¢, i = 1,2, 3,
given by (1.4) and apply the same method as in Example 1. While in the case
of Example 1 we obtain enclosures which diverge from the optimal enclosure
(Figure 1, right) the enclosures produced by the method in the case of Example 2
converge to the optimal one. This is demonstrated graphically on Figure 4. Since
the optimal and the numerically computed enclosures for x; are the same as in
Example 1 the corresponding graphs are omitted; only the graphs for x; and x3 are
presented. The graphs of the computed enclosures are visually undistinguishable
from the optimal enclosure. At the bottom of Figure 4 the error functions

o (Sih; 1), [xito, X% 01),  i=1,2,3
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2.6 1.5
x2 T T T T X3 T T T
24 1 4 optimal —
22 + - —
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2 u i .
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-1 h=0.125 - - - -
1.2 ..
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Figure 4.  Problem (4.6) with g1 = 0.2, & = & = 0.05. Optimal enclosure and enclosures

computed numerically for various step sizes h (top) and errors of the computed enclosures on
a logarithmic scale (bottom).

are plotted on a logarithmic scale. Convergence at a rate consistent with the expected
rate of global convergence can be observed.

Let us note that Theorem 4.1 provides a sufficient condition for problems with
no wrapping effect. It is an interesting question if and in what form this condition
is also a necessary condition for having no wrapping effect. Results in this regard
will be discussed in a separate paper.

5. Conclusion

In this paper a new concept of wrapping function is defined using the notion of
enclosing (wrapping) sets in IR” by n-dimentional intervals (of course other class-
es of sets in IR” like balls or ellipsoids can be used as well). It is proved that
the wrapping function is a solution of a differential problem of the form (2.3)-
(2.4). The wrapping function is the limit of the interval enclosures for the solution
of Problem (1.1)~(1.2) produced by methods of propagate and wrap type (Theo-
rem 2.2). Therefore the wrapping function can be used in quantitative estimation
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of the wrapping effect for initial value problems of ODEs; some applications in
this regard are discussed by means of examples. The wrapping function is also a

useful tool in characterizing problems without wrapping effect as demonstrated in
Theorem 4.1.
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