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Interval functions have often been discussed in relation to Hausdorff approxima-
tions [6] at Blagovest Sendov’s seminar on Approximation Theory held regularly in
the Bulgarian Academy of Sciences since 1964. Numerical computations related to
the best polynomial Hausdorff approximations of certain interval functions require
special attention to round-off errors [2]. In 1975 Sendov, who was my PhD super-
visor, gave me reprints of papers by T. Sunaga, H. Ratschek and G. Schröder on
interval arithmetic and differentiation of interval functions. I was very impressed
by these papers, especially by the one from Sunaga, which I enjoyed studying
thoroughly [5].

It took many centuries to human mind to grasp the mystery of numbers. G.
Birkhoff notes: “We should not forget that zero and negative numbers were among
the last to be accepted” [1]. The primary use of negative numbers (and zero) is to
make the equation A + X = B always solvable, i.e. to make the additive semigroup
(R +, +) of nonnegative numbers a group. The isomorphic extension (embedding) of
an Abelian semigroup into a group is now a common mathematical tool.

The set I+ = I(R ) of (proper) intervals with addition (multiplication) is an
Abelian semigroup, and thus can be made (embedded in, extended to) a group; this
has been noticed by M. Warmus in 1956 [7]. The new elements involved are the
improper intervals making a set I−, which together with the set I+ forms the set I
of all (proper and improper) intervals. An isomorphic extension of multiplication
(addition is trivial) from I+ to I based on set-theoretic arguments (i.e. preserving
inclusion isotonicity) is proposed by H.-J. Ortolf in 1969. In the beginning of the
seventies O. Mayer, H. Ratschek, G. Schröder and M. Kracht studied abstractly the
algebraic structure of intervals with respect to addition and multiplication by scalar,
known as quasilinear space. A rigorous algebraic study of the interval arithmetic
in I is due to E. Kaucher [3]; followed by related work by J. Wolff von Gudenberg,
E. Gardeñes et al.

My early work is related to inner operations in I+. To give a brief idea of
these operations it is instructive to compare the algebraic properties of proper
intervals to those of nonnegative numbers. Recall the useful operation “�” in the
additive semigroup (R +, +) of nonnegative numbers: A � B is the solution X of
A + X = B, if X exists, and is the solution Y of B + Y = A, if Y exists. Of course
A � B = |A − B|, but we do not have negative numbers −B in R

+, and hence we
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cannot write A − B = A + (−B). The so-called inner (nonstandard) operations for
proper intervals are defined similarly. For example, the interval inner difference
A � B, A, B ∈ I+, is the solution X of A + X = B, if such a solution X exists, and
is −Y = (−1)Y , where Y is the solution of B + Y = A, provided Y exists; if both
solutions exist, they coincide. Why do we take −Y in the above definition, and not
Y , as in the case of numbers? The answer of this question hides some of the secrets
of intervals.

By the end of the eighties many properties and applications of inner operations
were established—mainly for ranges of monotone functions and consequently for
a number of numerical algorithms. In my work I was supported by N. Dimitrova, E.
Popova, R. Anguelov, P. Bochev, G. Grozev, and other collaborators. Meanwhile, I
was searching for a link between the (inner) operations in I+ and the operations in
I. The success came with the introduction of a suitable symbolic notation involving
the functions σ : R −→ {+,−} defined by σ(α) = {+, if α ≥ 0; −, if α < 0}
and τ : I −→ {+,−} defined by τ(a) = {+, if a is proper; −, if a is improper}.
The functions σ (sign of a real number) and τ (type, direction of an interval) often
appear in interval arithmetic. Using σ we obtain a concise, uniform and functional
notation for the inner interval operations. For instance, we write A −σ B, where
A −+ B = A − B, A −− B = A � B and A +σ B = A −σ (−B). By means of σ the
distributive law for proper intervals (when using multiplication by scalar) takes the
form (α + β) ∗ C = α ∗ C +σ(αβ) β ∗ C. Now, the desired link: for a, b ∈ I we have
prop(a + b) = prop(a)+τ(a)τ(b) prop(b), where prop(a) ∈ I+ is the proper interval
corresponding to a ∈ I; similar relations exist for other operations.

Like numbers, intervals can be added, multiplied and compared, but differently
to numbers, which have the order relation “≤”, intervals have an additional order
inclusion ⊆. We can summarize the properties of numbers by saying that they make
an ordered field, but we still do not know what precisely is the ordered “field-
like” system of intervals (I, +, ∗,≤, ⊆). Like numbers intervals from I have group
properties with respect to both addition and multiplication. In the Abelian group
(I, +) every c ∈ I has an opposite −c. For c ∈ I write c+ = c and call c− = (−1)(−c)
the conjugate (dual) interval to c; note that in general (−1)(−c) 	= c; another interval
secret! For any c ∈ I, the corresponding proper interval is prop(c) = cτ(c).

Some secrets related to the distributivity-like relations have been recently revealed.
In the additive group of intervals with multiplication by scalar (I, +, R , ∗) there is a
simple distributivity relation: (α + β) ∗ cσ(α +β) = α ∗ cσ(α) + β ∗ cσ(β), which enables
a full characterization of this so-called quasilinear space with group structure.
Namely, one can define linear dependence, basis, etc. in the same manner as done
in a linear space, and one can show that a quasilinear space with group structure
is a direct sum of a linear and a symmetric space [4]. Symmetric intervals in I

have the property c− = −c and obey the distributive relation (a + b) ∗ cτ(a+b) =
a ∗ cτ(a) + b ∗ cτ(b). This relation is a special case of more general distributive-like
relations obtained by E. Popova; it can be used for an abstract definition of an
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ordered field-like system, which may become a key structure for further under-
standing the mystery of intervals.
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