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Abstract

Algebraic systems abstracting properties of convex bodies and intervals, with respect to addition and mul-
tiplication by scalars, known as quasilinear spaces, are studied axiomatically. We discuss special quasilinear
spaces with group structure called quasivector spaces. We show that every quasivector space is a direct sum
of a vector space and a symmetric quasivector space. A complete characterization of symmetric quasivector
spaces in the 6nite dimensional case is given, which permits to reduce computation in quasilinear spaces to
computation in familiar vector spaces.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The set-theoretic operations for addition (so-called vector or Minkowski addition) and multiplica-
tion by scalars play important roles in convex and interval analysis and related applied problems,
as natural arithmetic operations for convex bodies, resp. intervals. The abstract axiomatic study of
these operations leads to the concept of quasilinear space [5,6,10,15,16]. A quasilinear space over
the 6eld of reals can be de6ned as an additive abelian monoid with cancellation law endowed with
multiplication by scalars obeying the familiar four relations of vector spaces where the second dis-
tributive law is required to hold only for nonnegative scalars: (�+�) ∗C = � ∗C +� ∗C, if ��¿ 0,
cf. e.g. [17]. To see that the distributive law is violated when ��¡ 0, recall that a symmetric con-
vex body C satis6es (−1) ∗ C = C; hence 1 ∗ C + (−1) ∗ C = C + C = 2 ∗ C. On the other side,
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(1 − 1) ∗ C = 0 ∗ C = 0, showing that the second distributive law (� + �) ∗ C = � ∗ C + � ∗ C is not
valid for � = 1; � = −1 (unless C = 0).

As an abelian monoid with cancellation, a quasilinear space can be naturally embedded in an
(additive) group; thereby an isomorphic extension of the multiplication by scalars leads to a special
type of quasilinear spaces (those with group structure), here called quasivector spaces. Quasivec-
tor spaces obey all axioms of vector spaces, but a diCerent distributivity relation corresponding to
the second distributive law, namely: (� + �) ∗ c = � ∗ c + � ∗ c, if ��¿ 0. This relation can be
formulated in a form convenient for symbolic computations, see Theorem 1; here we give a new
simple proof of the latter relation. We also formulate and prove one more useful distributive relation
(Theorem 2).

A main result in this work (Theorem 5) states that every quasivector space is a direct sum of
a vector space and a symmetric quasivector space. This result has been proved in [7] in the 6nite
dimensional case, here we prove it in the general case using a direct and simple approach. The main
simpli6cation in this approach consists in the introduction of basis only in symmetric quasivector
spaces and not in general quasivector spaces, as in [7]. This leads to no loss of generality and
makes the exposition very simple and straightforward. It has been also demonstrated that symmetric
quasivector spaces are equivalent to vector spaces in the sense that the operations in both spaces are
mutually interchangeable. This equivalence enables us to transfer basic concepts of vector spaces to
symmetric quasivector spaces. We also prove that symmetric quasivector spaces with 6nite basis are
isomorphic to a special canonic space.

In Section 2 we introduce some notation and give some examples of quasivector spaces, such as
spaces of generalized convex bodies and intervals. In Section 3 we discuss calculation in quasivector
spaces. Section 4 is devoted to the link between quasivector and vector spaces, as well as to the
presentation of a quasivector space as a direct sum of a vector and a symmetric quasivector space.
The latter spaces are characterized in Section 5.

2. Quasivector spaces

2.1. Quasilinear spaces

By R we denote the set of reals; we use the same notation for the linearly ordered (l.o.) 6eld of
reals R= (R;+; ·;6). Throughout the paper R can be replaced by any other linearly ordered 6eld.
For any integer n¿ 1 we denote by Rn the set of all n-tuples (�1; �2; : : : ; �n), where �i ∈R. The set
Rn forms a vector space under the operations of addition and multiplication by scalars denoted by
Vn = (Rn;+;R; ·), n¿ 1.

We recall that every abelian monoid (M;+) with cancellation law induces an abelian group
(D(M);+), where D(M)=M2= ∼ is the di8erence (quotient) set of M consisting of all pairs (A; B)
factorized by the congruence relation ∼ :(A; B) ∼ (C;D) iC A + D = B + C, for all A; B; C; D∈M.
Addition in D(M) is de6ned by (A; B)+(C;D)=(A+C; B+D). The neutral (null) element of D(M)
is the class (Z; Z), Z ∈M; due to the existence of null element in M, we have (Z; Z) ∼ (0; 0). The
opposite element to (A; B)∈D(M) is opp(A; B) = (B; A). The mapping ’ : M → D(M) de6ned for
A∈M by ’(A)=(A; 0)∈D(M) is an embedding of monoids. We embed M in D(M) by identifying
A∈M with the equivalence class (A; 0) ∼ (A + X; X ), X ∈M; all elements of D(M) admitting the
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form (A; 0) are called proper and the remaining are improper. The set of all proper elements of
D(M) is ’(M) = {(A; 0) |A∈M} ∼= M.

De�nition 1. Let (M;+) be an abelian monoid with cancellation law. Assume that a mapping (mul-
tiplication by scalars) “∗” is de6ned on R× M satisfying:

(i) � ∗ (A + B) = � ∗ A + � ∗ B,
(ii) � ∗ (� ∗ C) = (��) ∗ C,

(iii) 1 ∗ A = A,
(iv) (� + �) ∗ C = � ∗ C + � ∗ C; if ��¿ 0.

The algebraic system (M;+;R; ∗) is called a (cancellative) quasilinear space over R.

Remark. De6nition 1 can be found in various modi6cations [5,6,10,12,13,15,16]. The condition
��¿ 0 in the last axiom of the above de6nition is characteristic for convex bodies, cf. [17]. The
isomorphism between (classes of) convex bodies and quasilinear spaces is studied in [16] (there the
notion of R-semigroup with cancellation law has been used).

Since (M;+) is not assumed to be a group, there is no opposite in (M;+;R; ∗) in general, that
is, for some A∈M the equation A+X = 0 may not have a solution X . The operator @A= (−1)∗A
is called negation. We write A@B = A + (@B); note that A@A = 0 may not generally hold.

An element A∈M, such that A@A = 0, is called linear; in such case opp(A) =@A. We denote
M′ = {A∈M |A@A = 0}. An element A∈M, such that @A = A, is called (centrally) symmetric;
we denote M′′ = {A∈M |@A = A}.

Using the above mentioned group extension method every quasilinear space (M;+;R; ∗) can be
embedded into the group (D(M);+). Multiplication by scalars “∗” is extended from R × M to
R×D(M) by means of the following natural de6nition of ∗ :R×D(M) → D(M):

� ∗ (A; B) = (� ∗ A; � ∗ B); A; B∈M; �∈R: (1)

In particular, multiplication by the scalar −1 in D(M), called negation, is

@(A; B) = (−1) ∗ (A; B) = (@A;@B); A; B∈M: (2)

Note that (A; B) is proper if and only if �∗(A; B) is proper. Indeed, (A; B)=(C; 0) ⇔ A=B+C ⇔
� ∗ A = � ∗ (B + C) = � ∗ B + � ∗ C ⇔ (� ∗ A; � ∗ B) = (� ∗ C; 0).

Remark. RadstrLom [14] studies the following multiplication by scalars in (D(K);+):

� · (A; B) =

{
(� ∗ A; � ∗ B); if �¿ 0;

(|�| ∗ B; |�| ∗ A); if �¡ 0:
(3)

If �¡ 0, then � · (A; 0) = (0; |�| ∗ A), which is an improper result. Therefore de6nition (3) does not
provide an extension of multiplication by scalars in M.

More about quasilinear spaces with monoid structure can be found in [7]. Here we shall concentrate
on the space D(M), resp. on quasilinear spaces with group structure. In the sequel we shall use
lower case roman letters to denote the elements of quasilinear spaces of group structure, such as
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D(M), writing e.g. a= (A1; A2); A1; A2 ∈M. For example, (2) can be written: @a= (−1) ∗ a; a@b
means a + (@b), etc.

2.2. Quasivector spaces: de#nition

De�nition 2. A quasivector space (over the l.o. 6eld R), denoted (Q;+;R; ∗), is an abelian group
(Q;+) with a mapping (multiplication by scalars) “∗”: R×Q→ Q, such that for a; b; c∈Q; �; �;
�∈R:

� ∗ (a + b) = � ∗ a + � ∗ b; (4)

� ∗ (� ∗ c) = (��) ∗ c; (5)

1 ∗ a = a; (6)

(� + �) ∗ c = � ∗ c + � ∗ c; if ��¿ 0: (7)

Remarks. (1) In (5) and (7) the sum � + �, resp. the product �� = � · � and the relation ��¿ 0
are well-de6ned in the l.o. real 6eld R= (R;+; ·;6).

(2) It is easy to see that, if the condition ��¿ 0 in the quasidistributive law (7) is replaced by
the condition �¿ 0, �¿ 0, then an equivalent de6nition is obtained.

(3) Quasivector spaces are called q-linear spaces in [7].

Clearly, every vector space is a quasivector one and every quasivector space is a quasilinear one.
The following proposition is straightforward:

Proposition 1 (Markov [7]): Let (M;+;R; ∗) be a quasilinear space over R, and let (Q;+), Q =
D(M), be the induced abelian group. Let ∗ :R ×Q → Q be multiplication by scalars de#ned by
(1). Then (Q;+;R; ∗) is a quasivector space over R.

Conjugate elements. From opp(a)+a=0 we obtain @opp(a)@a=0, that is @opp(a)=opp(@a).
The element @opp(a) = opp(@a) will be further denoted by a− and the corresponding operator
will be called dualization or conjugation.

Relations @opp(a) = opp(@a) = a− imply opp(a) = @(a−) = (@a)−, which will be shortly
denoted opp(a) =@a−. The last notation will be used to denote symbolically the opposite elements
instead of the confusing notation −a meaning opposite in algebra and negation in convex and interval
analysis. Thus, in a quasivector space we write a@a− = 0, resp. @a− + a = 0.

Subspaces, direct sum. A subspace of a quasivector space (Q;+;R; ∗) is a quasivector space
(P;+;R; ∗), such that P ⊆ Q (the operations in P are inherited from Q). If (P;+;R; ∗) is a
subspace of the quasivector space (Q;+;R; ∗) then, of course, (P;+) is an abelian subgroup of
the abelian group (Q;+). A suNcient condition for subspace can be formulated as follows. H is a
subspace of the quasivector space G if and only if H ⊂ G and H is closed under “+”, “∗”, “−”, i.e.:

(i) a + b∈H for all a; b∈H;
(ii) � ∗ c∈H for all �∈R and c∈H;

(iii) a− ∈H for all a∈H.
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Sum and direct sum of quasivector spaces are de6ned as in vector spaces. Namely, for two
quasivector spaces U , V there is a least subspace containing both U and V , called their sum and
written U + V . We have U + V = {u + v | u∈U; v∈V}. Let Z be a quasivector space and U; V be
subspaces of Z . We say that Z is the direct sum of U and V and write Z = U ⊕ V , if each z ∈Z
can be uniquely presented in the form z = u + v, where u∈U , v∈V . One can show:

(1) a sum U + V is direct, if u1 + v1 = u2 + v2, u1; u2 ∈U , v1; v2 ∈V imply u1 = u2, v1 = v2 (or,
equivalently, u + v = 0, u∈U , v∈V imply u = 0, v = 0);

(2) Z = U ⊕ V ⇔ Z = U + V and U ∩ V = 0.

The elements of U ⊕V are denoted (u; v). Addition in U ⊕V is (u1; v1) + (u2; v2) = (u1 +u2; v1 + v2)
and multiplication by scalars is � ∗ (u; v) = (� ∗ u; � ∗ v).

2.3. Examples of quasivector spaces

Example 1. The system (K;+) of all convex bodies in a real m-dimensional Euclidean vector space
Em with set-theoretic (vector, Minkowski) addition: A+B={�+� | �∈A; �∈B}; A; B∈K, is a proper
abelian monoid with cancellation law having as a neutral element the origin “0” of Em [17]. The
system (K;+;R; ∗), where “∗” is the set-theoretic multiplication by real scalars: � ∗ A = {�� | �∈A},
is a quasilinear space (of monoid structure). The monoid (K;+) induces a group of generalized
(extended, directed) convex bodies (D(K);+), which has been considered by a number of authors,
cf. [1–3,11–14]. In [7] we investigate the space (D(K);+;R; ∗), where “∗” is de6ned by (1). In
particular n-dimensional intervals form a quasilinear space [5,6,10,15,16], which induces a quasivector
space of generalized/directed intervals [8].

Example 2. For any integer k¿ 1 the set Rk of all k-tuples (�1; �2; : : : ; �k), where �i ∈R and
(�1; �2; : : : ; �k), (�1; �2; : : : ; �k) are distinct unless �1 = �1; �2 = �2; : : : ; �k = �k , forms a quasivector
space over R under the following operations:

(�1; �2; : : : ; �k) + (�1; �2; : : : ; �k) = (�1 + �1; �2 + �2; : : : ; �k + �k); (8)

� ∗ (�1; �2; : : : ; �k) = (|�|�1; |�|�2; : : : ; |�|�k); �∈R: (9)

This quasivector space will be denoted by Sk = (Rk ;+;R; ∗) and called the canonical symmetric
quasivector space (of dimension k). Note that multiplication by −1 (negation) in Sk is the same as
identity while the opposite operator is the same as conjugation:

opp(�1; �2; : : : ; �k) = (�1; �2; : : : ; �k)− = (−�1;−�2; : : : ;−�k): (10)

Denoting S= S1, we have Sk = S⊕ S⊕ · · · ⊕ S.

Remark. The case k = 1 in the above Example 2 has been discussed to some extent in [15], see
their Example 3.2.

Example 3. Consider the set of in6nite sequences (�1; �2; : : :), �i ∈R, with addition and multiplication
by scalars de6ned as in (8) and (9). We again obtain a quasivector space.
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Example 4. The set of all real functions is a quasivector space if we de6ne f + g as the function
whose value at x is f(x) + g(x), and � ∗ f as a function whose value at x is

� ∗ f(x) =

{
� · f(x) if �¿ 0;

|�| · f(−x) if �¡ 0:
(11)

In particular, negation is: −1∗f(x) =f(−x). Note that in this quasivector space negation is distinct
from opposite opp(f) = −f. Note that the composition of opposite and negation −f(−x) is a new
operator. The operation (11) appears in the theory of (diCerences of) support functions, cf. [7,18].
We note that, if f is the support function of A∈K, then (11) is the support function of the convex
body � ∗ A; in particular, −1 ∗ f(x) = f(−x) is the support function of @A.

Example 5. Let C=(C;+;R; ·) be the vector space of all complex numbers c=c1 +ic2 with addition:
(c1 +ic2)+(d1 +id2)=(c1 +d1)+i(c2 +d2) and multiplication by real scalars: �·(c1 +ic2)=�c1 +i�c2.
Opposite is −c=−c1 − ic2. One introduces in C conjugate elements by means of: c− = Oc= c1 − ic2;
in particular Oi = −i. De6ne a new multiplication by scalars in C by

� ∗ c =

{
� · c if �¿ 0;

� · Oc if �¡ 0:

The system C∗ = (C;+;R; ∗) is a quasivector space. Negation in C∗ is @c= (−1)∗ c=− Oc=−(c1 −
ic2) =−c1 + ic2. We have C∗ =V1 ⊕ Im, where Im= (Im;+;R; ∗) is the quasivector space of purely
imaginary numbers. Note that in Im negation is same as identity, whereas conjugation is same as
opposite. Note that the “quasivector” multiplication “∗” of a complex number c does not change the
sign of the imaginary part c2, whereas the “linear” multiplication “·” may change it (whenever the
scalar is negative).

Example 6. Consider the direct sum Vl ⊕ Sk of the l-dimensional vector space Vl = (Rl;+;R; ·)
and the quasivector space Sk = (Rk ;+;R; ∗) from Example 2. The elements of Vl⊕Sk are n-tuples,
n = l + k, of the form ( 1; : : : ;  l;  l+1; : : : ;  l+k). Addition and multiplication by scalars (�∈R) are:

( 1; : : : ;  l;  l+1; : : : ;  l+k) + (!1; : : : ; !l; !l+1; : : : ; !l+k)

=( 1 + !1; : : : ;  l + !l;  l+1 + !l+1; : : : ;  l+k + !l+k);

� ∗ ( 1; : : : ;  l;  l+1; : : : ;  l+k) = (� 1; : : : ; � l; |�| l+1; : : : ; |�| l+k):

As direct sum of two quasivector spaces, Vl ⊕ Sk is a quasivector space. Negation

(−1) ∗ ( 1; : : : ;  l;  l+1; : : : ;  l+k) = (− 1; : : : ;− l;  l+1; : : : ;  l+k)

is distinct from opposite: opp( 1; : : : ;  l+k) = (− 1; : : : ;− l;− l+1; : : : ;− l+k). The composition of
the opposite and negation operators yields:

opp(@( 1; : : : ;  l;  l+1; : : : ;  l+k)) = ( 1; : : : ;  l;− l+1; : : : ;− l+k).
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3. Calculation in quasivector spaces

3.1. Rules for calculation in quasivector spaces

Let (Q;+;R; ∗) be a quasivector space over R. As (Q;+) is a group, for every a there exists an
opposite element opp(a) =@a−, such that a@a− = 0. In a quasivector space the relation a@a= 0,
may not necessarily hold; indeed, due to the condition ��¿ 0 in (7) the equality (−1) ∗ a+ 1 ∗ a=
(−1 + 1) ∗ a may not be true. This means that @a is not generally the opposite of a (unlike in a
vector space, where negation and opposite coincide).

Using the group properties, such as 0 + a = a, opp(a) + a = 0, opp(a + b)= opp(a)+ opp(b),
a + b = a + c ⇒ b = c, and relations (4)–(7) one can derive rules for calculation in a quasivector
space. A list of such rules is summarized in the following.

Proposition 2. Let (Q;+;R; ∗) be a quasivector space over R. Then for all �; �; �∈R and all
a; b; c∈Q the following properties hold:

(1) 0 ∗ a = 0;
(2) � ∗ 0 = 0;
(3) opp(� ∗ a) = � ∗ opp(a);
(4) @(� ∗ a) = (−�) ∗ a;
(5) � ∗ (a@b) = � ∗ a@� ∗ b;
(6) � ∗ a = 0 ⇒ � = 0 or a = 0;
(7) � ∗ a = � ∗ b ⇒ � = 0 or a = b;
(8) (�− �) ∗ c = � ∗ c + (−�) ∗ c = � ∗ c@� ∗ c; ��6 0;
(9) (

∑n
i=1 �i) ∗ c =

∑n
i=1 �i ∗ c; �i¿ 0; i = 1; : : : ; n;

(10) � ∗∑n
i=1 ci =

∑n
i=1 � ∗ ci.

Proof. The veri6cation of the above properties is trivial. For example, we prove the 6rst three
properties.

(1) We have 1 ∗ a = (1 + 0) ∗ a = 1 ∗ a + 0 ∗ a, implying 0 ∗ a = 0.
(2) If �=0 the relation follows from 1); if � �= 0, then c+�∗0=�∗((1=�)∗c+0)=�∗((1=�)∗c)=c,

hence � ∗ 0 = 0.
(3) Assume � �= 0. We have to prove that � ∗ opp(a) + � ∗ a= 0, that is, opp(a) + (1=�) ∗ (� ∗ a) = 0,

which is obviously true.

Note that y=a− is the solution of the equation: y@a=0, resp. @y+a=0. For �∈R and a; b∈Q
we have the following relations using conjugation: �∗(a@b−)=�∗a@�∗b−; a@a−=@a+a−=0;
� ∗ a@� ∗ a− = � ∗ (a@a−) = 0; a+ b= 0 ⇔ a=@b−; a+ � ∗ b= 0 ⇔ a= (−�) ∗ b− =@(� ∗ b−).

We shall make use of the binary set # = {+;−} and the function $ :R→ # de6ned by

$(�) =

{
+ if �¿ 0;

− if �¡ 0:

The “product”  !,  ; !∈#, is de6ned by + + = − − = +, + − = − + = −.
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A special symbolic notation. We make the convention a+ = a. Then the symbolic notation a 
for a∈Q,  ∈#, makes sense; namely a is either a or a− according to the binary value of  .
Using this notation one may write rules holding true for all a; b; c∈Q; �∈R;  ; !; %∈P, such as:
(a + b) = a + b ; (a! + b%) = a ! + b %; (� ∗ c!)% = � ∗ c!%, e.g., (� ∗ c!)! = � ∗ c. The possibility
to perform such symbolic transformations justi6es the use of the notation a− for conjugate instead
of the traditional notation Oa. More motivations in this direction are contained in the sequel.

3.2. The quasidistributive law

The condition ��¿ 0 in (7) makes the impression that there may be some freedom in the form
of the distributivity relation for ��¡ 0. The following two theorems show that this is not the case:
it turns out that (7) determines a special relation for all �; �∈R.

Theorem 1. Let (Q;+;R; ∗) be a quasivector space over R. For �; �∈R and c∈Q we have:

(� + �) ∗ c$(�+�) = � ∗ c$(�) + � ∗ c$(�): (12)

Proof. In the case $(�) = $(�) (12) is true by assumption (7). Consider the case $(�) = −$(�).
Assume that 06 �, �¡ 0 and 0¡− �6 �. In this subcase we have 06 � + �, so that (12) reads:
(� + �) ∗ c = a ∗ c + � ∗ c−. Using (7), we can write

� ∗ c + � ∗ c− = ((� + �) − �) ∗ c + � ∗ c−
= (� + �) ∗ c@� ∗ c + � ∗ c−
= (� + �) ∗ c + � ∗ (@c + c−) = (� + �) ∗ c;

so that (12) is proved to hold true in this subcase. The remaining subcases are veri6ed similarly.

“Dualizing” by $(� + �), relation (12) can be written in the equivalent form

(� + �) ∗ c = � ∗ c$(�)$(�+�) + � ∗ c$(�)$(�+�): (13)

Relations (12) and (13) are convenient for symbolic computations. By contrast, without the use of
binary variables, formula (13) obtains the form

(� + �) ∗ c =




� ∗ c + � ∗ c if ��¿ 0;

� ∗ c + � ∗ c− if ��¡ 0; |�|¿ |�|;
� ∗ c− + � ∗ c if ��¡ 0; |�|¡ |�|;

which can be hardly used for symbolic manipulations.
Relation (12) shows that c can be always factored out in an expression of the form � ∗ c$(�) +

� ∗ c$(�). It is easy to verify that c cannot be generally factored out in an expression of the form
� ∗ c$(�) + � ∗ c−$(�). In fact, the following holds:
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Theorem 2. Let (Q;+;R; ∗) be a quasivector space over R. For �; �∈R and c∈Q we have:

� ∗ c$(�) + � ∗ c−$(�) =

{
$(�)|�− �| ∗ c$(�−�) + & ∗ (c + c−) if ��¿ 0;

(� + �) ∗ c$(�) + & ∗ (c@c)$(�) if ��¡ 0;

wherein

& =

{
� if |�|6 |�|;
� if |�|¿ |�|:

Proof. Assume ��¿ 0, 06 �¡�. We have

� ∗ c$(�) + � ∗ c−$(�) = ((�− �) + �) ∗ c$(�−�) + � ∗ c−$(�)

= (�− �) ∗ c$(�−�) + � ∗ c + � ∗ c−
= (�− �) ∗ c$(�−�) + � ∗ (c + c−):

The remaining subcases of ��¿ 0 are treated similarly. Assume now ��¡ 0, 06−�¡�. We have

� ∗ c$(�) + � ∗ c−$(�) = ((� + �) − �) ∗ c$(�) + � ∗ c
= (� + �) ∗ c$(�)@� ∗ c + � ∗ c
= (� + �) ∗ c$(�) + � ∗ (c@c)$(�):

The remaining subcases are veri6ed similarly.

Relations (12) and (13) show that in a quasivector space one can “open brackets” in expressions
of the form (� + �) ∗ c. However, it is not always possible to “factor out” a common multiplier c
in an expression of the form � ∗ c + � ∗ c. Indeed, it follows from Theorems 1 and 2 that

� ∗ c + � ∗ c = (� + �) ∗ c + � ∗ (c@c); (14)

wherein

� =




0 if ��¿ 0;

� if ��¡ 0; |�|6 |�|;
� if ��¡ 0; |�|¿ |�|:

We note that the rule � ∗ c = � ∗ c ⇒ � = � or c = 0 is not generally valid in a quasivector space,
rather we have � ∗ c = � ∗ c ⇒ � = � or c = 0 or c =@c; � = −�, which can be proved using (12).

4. Quasivector spaces and associated vector spaces

4.1. Vector spaces induced by quasivector spaces

Let (Q;+;R; ∗) be a quasivector space over the l.o. 6eld R. Consider the operation “·”: R×Q→ Q
de6ned by

� · c = � ∗ c$(�); �∈R; c∈Q: (15)
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It is not diNcult to prove [7]:

Theorem 3. Let (Q;+;R; ∗) be a quasivector space over R. Then (Q;+;R; ·), with “·” de#ned by
(15), is a vector space over R, that is

� · (� · c) = (��) · c; (16)

� · (a + b) = � · a + � · b; (17)

1 · a = a; (18)

(� + �) · c = � · c + � · c: (19)

Operation (15) is well de6ned on R × Q for any quasivector space Q over R. This operation
is called linear multiplication in Q. By contrast, the original multiplication “∗” in R×Q is called
quasivector multiplication. Theorem 3 implies that every quasivector space (Q;+;R; ∗) involves
a linear multiplication and hence an associated vector space (Q;+;R; ·). Note that the element
(−1) · a = (−1) ∗ a− = @a− is the opposite to a in Q, opp(a) = @a−, as for a∈Q we have:
a + (−1) · a = 0.

Let (Q;+;R; ∗) be a quasivector space over R and let (Q;+;R; ·) be the induced via (15) vector
space over R. Consider the system (Q;+;R; ·;−), which is the vector space (Q;+;R; ·) together
with the operator conjugation from the original space. Although the operation “∗” is not explicitly
present in the notation (Q;+;R; ·;−), the latter system implicitly involves the operation “∗”, since
using (15) we have

� ∗ c = � · c$(�) =

{
� · c if �¿ 0;

� · c− if �¡ 0:
(20)

De�nition 3. Two algebraic systems with the same sets of elements and diCerent sets of operations
are equivalent if every expression in the 6rst system can be presented in terms of the operations of
the second system and vice versa.

Given a quasivector space (Q;+;R; ∗) with conjugation a−, the extended vector space
(Q;+;R; ·;− ) with “·” de6ned by (15) is equivalent to the original quasivector space (Q;+;R; ∗).
The equivalence follows from the transition formulae (15), (20) and the relation a− = @opp(a).
Note that the vector space (Q;+;R; ·) (without conjugation!), is generally not equivalent to the
quasivector space (Q;+;R; ∗).

The linear multiplication is useful for the interpretation of properties of the quasivector spaces
in terms of known linear concepts. For example [7], let �; �∈R, d∈Q. If � = �2 − �2 �= 0, then
the equation � · x + � · x− = d has a unique solution x = �−1 · (� · d − � · d−). If � = � �= 0, then
x + x− = �−1 · d. If � = −� �= 0, then x − x− = �−1 · d. (Note that in the context of Example 5 the
equation � · x + � · x− = d can be written �x + � Ox = d.)
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In the special case of convex bodies the linear multiplication has been introduced by means of
(3) cf. [3,12,14]. Note that the right-hand sides of (3) and (15) are equivalent, in the sense that

� ∗ (A; B)$(�) =

{
(� ∗ A; � ∗ B) if �¿ 0;

((−�) ∗ B; (−�) ∗ A) if �¡ 0:
(21)

4.2. Quasivector spaces induced by vector spaces

Vector spaces with involution. Let G= (G;+;R; ·) be a vector space over the l.o. 6eld R.
A linear transformation i :G→ G, such that for a; b∈G, �∈R:

(1) i(a + b) = i(a) + i(b),
(2) i(� · c) = � · i(c), satisfying the additional assumption:
(3) i2(a) = a,

is called an involution (dual automorphism, symmetry) in G.
Note that an involution also satis6es: i(a) = 0 iC a = 0. In every vector space (G;+;R; ·), there

are (at least) two involutions: identity and opposite.
Assume that G is a vector space and i is an involution in G. De6ne ∗ :R×G→ G by

� ∗ c =

{
� · c if �¿ 0;

� · i(c) if �¡ 0:
(22)

The next result shows that a vector space with involution generates a quasivector space; this result
in some sense inverses Theorem 3:

Theorem 4. Let G = (G;+;R; ·; i) be a vector space (over the l.o. #eld R) with an involution i.
Let ∗ :R×G→ G be de#ned by (22). Then:

(1) the system (G;+;R; ∗) induced by (G;+;R; ·; i) is a quasivector space;
(2) the two systems (G;+;R; ∗) and (G;+;R; ·; i) are equivalent.

Proof.

(1) We are given that (G;+) is an abelian group and “·” satis6es relations (16)–(19). We prove
that relations (4)–(7) hold true with “∗” de6ned by (22). To prove � ∗ (a + b) = � ∗ a + � ∗ b
assume 6rst �¿ 0. Then, using (22) and (17) we obtain (4). From (17) and the properties of
i we have � · i(a + b) = � · i(a) + � · i(b). Using (22) for �¡ 0 the latter implies (4). To prove
(5) we consider various cases. Let �¿ 0, �¿ 0. In this case (5) holds because � ∗ c = � · c for
all c∈G. Let �¿ 0, �¡ 0. In this case we have � ∗ c = � · i(c) for all c∈G, resp., using the
properties of i, we obtain � · c = � ∗ i(c) and (��) · c = (��) ∗ i(c). Replacing in (16) we obtain
� ∗ (� ∗ i(c)) = (��) ∗ i(c), which implies (5). The case �¡ 0, �¿ 0 is proved analogously,
the case �¡ 0, �¡ 0 requires the property i2(a) = a. Properties (4), (5) are proved, properties
(6)–(7) can be proved similarly.



104 S. Markov / Journal of Computational and Applied Mathematics 162 (2004) 93–112

(2) To prove equivalence consider the involution i as conjugation in (G;+;R; ∗), that is i(a) = a−.

The involution i generating a quasivector space in the sense of Theorem 4 will be called a generic
involution. If we chose identity as a generic involution, then (22) implies � ∗ c = � · c for all �∈R,
c∈G, that is both multiplications “·” and “∗” coincide; this is a trivial situation, as the induced
quasivector space coincides with the original vector space. If opposite is taken as generic involution,
then (22) obtains the form:

� ∗ c = |�| · c: (23)

According to Theorem 4 the induced space (G;+;R; ∗) with “∗” de6ned by (23) is a quasivector
space. It is easy to check that the space (G;+;R; ∗) is not linear in general. From (23) we obtain
for � = −1 that (−1) ∗ c = c. We pay a special attention to this important case in Section 4.

The elements c∈G = (G;+;R; ∗), satisfying c + i(c) = 0 form a subspace of G; the elements
c∈G, such that i(c) = c, form another subspace. These elements play the role of symmetric, resp.
linear elements to be considered next.

4.3. Representation of a quasivector space as a direct sum of a vector and a symmetric subspace

De�nition 4. Q is a quasivector space. An element a∈Q with a@a=0 is called linear. An element
a∈Q with @a = a is called symmetric.

It can be easily checked that in a quasivector space Q the subsets of linear and symmetric elements
Q′ = {a∈Q | a@a = 0}, resp. Q′′ = {a∈Q | a =@a} form subspaces of Q.

Proposition 3. Assume that Q is a quasivector space. The subspace Q′ = {a∈Q | a@a = 0} is a
vector space.

Indeed, we only have to check that relation (7) becomes true for all values of the scalars. However,
this is obvious from (14).

De�nition 5. Assume that Q is a quasivector space. The space Q′ = {a∈Q | a@a= 0} is called the
linear subspace of Q and the space Q′′ = {a∈Q | a=@a} is called the symmetric subspace of Q.

Below we summarize some of the properties of the linear and symmetric elements:

(1) a∈Q′ ⇔ a = a− ⇔ a@a = 0 ⇔@a = opp(a) ⇔ ∃c∈Q : a = c + c−;
(2) b∈Q′′ ⇔ b =@b ⇔ b + b− = 0 ⇔ b− = opp(b) ⇔ ∃d∈Q : b = d@d.

To prove existence, in case 1 take c = (1=2) ∗ a+ s, where s∈Q′′ is arbitrary, and in case 2 take
d = (1=2) ∗ b + t, where t ∈Q′ is arbitrary.

The next theorem shows that every quasivector space is a direct sum of a vector space and a
symmetric quasivector space.
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Theorem 5. For every quasivector space Q we have Q = Q′ ⊕ Q′′. More speci#cally, for every
x∈Q we have x = x′ + x′′ with unique

x′ = (1=2) ∗ (x + x−)∈Q′;

x′′ = (1=2) ∗ (x@x)∈Q′′:

Proof. Assume x∈Q. Using that x−@x = 0 we have

x′ + x′′ = (1=2) ∗ (x + x−) + (1=2) ∗ (x@x)

= (1=2) ∗ (x + x + x−@x) = x:

On the other side we have x′=(1=2)∗(x+x−)∈Q′ and x′′=(1=2)∗(x@x)∈Q′′. Hence, Q=Q′+Q′′.
Furthermore, Q′∩Q′′=0. Indeed, assume x∈Q′ and x∈Q′′. Then we have simultaneously x@x=0
and x =@x, implying x = 0. Hence Q=Q′ ⊕Q′′.

Theorem 5 states that every element x∈Q can be decomposed in a unique way as x′ + x′′, where
x′ is an element of a vector space and x′′ belongs to a symmetric quasivector space. We shall call
x′ the linear part of x, and x′′—the symmetric part of x, and write x = (x′; x′′).

In a quasivector space Q the symmetry property a = opp(a) is satis6ed only by the null element
0 of Q. Indeed, a =@a− is equivalent to a + a = 0, or 2 ∗ a = 0, resp. a = 0.

Since the distributivity relation is of diCerent form in a vector, resp. symmetric quasivector space,
one may wonder how this fact agrees with Theorem 5. Indeed, assume c∈Q with c=c′+c′′, c′ ∈Q′,
c′′ ∈Q′′, equivalently: c = (c′; c′′). Relation (12) decomposes into

(� + �) ∗ c′$(�+�) = � ∗ c′$(�) + � ∗ c′$(�);

(� + �) ∗ c′′$(�+�) = � ∗ c′′$(�) + � ∗ c′′$(�):

Using that c′ is linear, we have c′ = c′−, so that the 6rst relation is equivalent to the familiar:
(� + �) ∗ c′ = � ∗ c′ + � ∗ c′.

Hints for practical applications. In practice we need to know how to solve problems formulated in
quasilinear spaces with monoid structures, like convex bodies and intervals, cf. Example 1 (Section
2). Assume that M is a quasilinear space (with monoid structure), cf. De6nition 1, and Q=D(M) is
the induced quasivector space of factorized pairs (A; B), A; B∈M. Let us check how proper elements
of the form a = (A; 0) are decomposed in the form a = a′ + a′′ = (a′; a′′). We have

a′ = (1=2) ∗ (a + a−) = (1=2) ∗ (A;@A); (24)

a′′ = (1=2) ∗ (a@a) = (1=2) ∗ (A@A; 0): (25)

We see that the linear part a′ = (A;@A) of a proper element (A; 0) may not be a proper element in
general. The linear part (A;@A) is a proper element if there exists X ∈M such that (A;@A)=(X; 0),
that is A = X@A. For example, in the case of two-dimensional convex bodies, if A is a (proper)
triangle, then such X does not exist and consequently the linear part of A is an improper element.
In such a situation we need to interpret results which are improper in terms of proper elements.
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5. Symmetric quasivector spaces

5.1. Relation to vector spaces

Recall that an element s from a quasivector space, such that (−1)∗ s= s, brieTy @s= s, is called
(centrally) symmetric. A quasivector space consisting of symmetric elements is called a symmetric
quasivector space.

A symmetric quasivector space S can be de6ned axiomatically as an abelian group with multi-
plication by scalars (from a l.o. 6eld) satisfying (4)–(7) together with the additional assumption:
@a = a for all a∈S.

In a symmetric quasivector space we have: � ∗ c = (−�) ∗ c = |�| ∗ c. Hence formula (15) for the
induced linear multiplication in a symmetric quasivector space can be written as

� · c = |�| ∗ c$(�): (26)

Relation (23) shows that in a vector space one can introduce a quasivector multiplication by
scalars via � ∗ c = |�| · c, thus using the available operations in a vector space over the l.o. 6eld R.

Substituting � = −1 in (23), we obtain @c = 1 · c = c. This shows that negation coincides with
identity (all elements c are symmetric); hence negation can be expressed by means of the operations
in the vector space. Also, recall that for symmetric elements a conjugation equals opposite,

a− = opp(@a) = opp(a): (27)

We thus obtain the following corollary from Theorem 3:

Corollary. Let (S;+;R; ∗) be a symmetric quasivector space over R. The induced vector space
(S;+;R; ·), with “·” de#ned by (15), due to (23), (27), has all operations present in the symmetric
quasivector space (S;+;R; ∗), and thus (S;+;R; ∗) and (S;+;R; ·) are equivalent.

Conversely, we have

Theorem 6. Every vector space over a l.o. #eld R induces via (23), (27) an equivalent symmetric
quasivector space.

Thus to every vector space over a l.o. 6eld (G;+;R; ·), we associate the symmetric quasivector
space (G;+;R; ∗) with “∗” de6ned by (23). In accordance to what was said above we distinguish
between the two multiplications by scalars: the linear multiplication by scalars “·”, and the qua-
sivector multiplication by scalars “∗”. Note that the two spaces—the original (Q;+;R; ∗) and the
induced (Q;+;R; ·)—although equivalent are generally distinct from each other as they generally
have diCerent operations for multiplication by scalars; the quasivector multiplication in a symmetric
quasivector space is generally not a linear multiplication.

A vector space can be endowed with several involutions; when used as generic involutions, the
latter may generate distinct quasivector spaces. In particular, if a vector space has a generic involution
i, distinct from identity and opposite, then the generated quasivector space via (22) is generally
distinct from the symmetric quasivector space (induced via the opposite operator).

Setting � = −1 in (22) we obtain (−1) ∗ c = (−1) · i(c) = opp(i(c)). Thus i coincides with
conjugation: i(c) = opp(@c) = c−. Hence formula (22) becomes of form (20), which completes the
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relation between a quasivector space (Q;+;R; ∗) and the induced vector space (Q;+;R; ·). More
speci6cally, every quasivector space (Q;+;R; ∗) is equivalent to the induced vector space endowed
with the corresponding conjugation operation, that is the spaces (Q;+;R; ∗) and (Q;+;R; ·;−) are
equivalent.

According to Theorem 4 every quasivector space is equivalent to a vector space endowed with an
involution i (called conjugation). In the special case, when this involution coincides with some of the
involutions in the associated vector space (identity or opposite), then the quasivector space is either
linear or symmetric. If i is neither identity nor opposite, then the quasivector space has (at least)
four involutions: identity, opposite, conjugation (i) and negation opp(i), which is a composition of
opposite and conjugation.

The “symmetric” case can be summarized as follows: Every symmetric quasivector space over R
generates via (26) an equivalent vector space and, vice versa, every vector space over R induces
via (20) an equivalent symmetric quasivector space.

5.2. Linear combinations in symmetric quasivector spaces

Assume that (S;+;R; ∗) is a symmetric quasivector space and (S;+;R; ·) is the associated equiv-
alent vector space. From the vector space (S;+;R; ·) we may transfer vector space concepts, such
as linear combination, linear dependence, basis etc., to the original symmetric quasivector space
(S;+;R; ∗). For example, the concept of linear combination obtains the following form.

Let c(1); c(2); : : : ; c(k) be 6nitely many (not necessarily distinct) elements of S. An element f∈S
of the form

f = �1 ∗ c(1)
$(�1) + �2 ∗ c(2)

$(�2) + · · · + �k ∗ c(k)
$(�k); (28)

where �1; �2; : : : ; �k ∈R, is called a linear combination of c(1); c(2); : : : ; c(k) ∈S.

Remarks. (1) Using (15) we see that (28) is a reformulation of the familiar linear combination
f=

∑k
i=1 �i · c(i) = �1 · c(1) + �2 · c(2) + · · ·+ �k · c(k) from the induced vector space (S;+;R; ·). (2) It

is shown in [7] that the concept of linear combination can be directly extended to an arbitrary (not
necessarily symmetric) quasivector space; here we use a more restricted, but simpler approach.

Proposition 4. Let c(1); c(2); : : : ; c(k) ∈S, k¿ 1. Then the set

H=

{
k∑

i=1

�i ∗ c(i)
$(�i) | �i ∈R; i = 1; : : : ; k

}

of all linear combinations of c(1); c(2); : : : ; c(k) is a subspace of S.

The proof is elementary—it can be done either by passing to the induced vector space or in terms
of quasivector spaces. Throughout this section we shall keep to the second approach.

The elements c(1); c(2); : : : ; c(k) form a generating set for H. We also say that the subspace H
de6ned in Proposition 4 is spanned by c(1); c(2); : : : ; c(k) and write H= span {c(1); c(2); : : : ; c(k)}.

Let S be a symmetric quasivector space over R. The elements c(1); c(2); : : : ; c(k) ∈S, k¿ 1, are
linearly dependent (over R), if there exists a nontrivial linear combination of {c(i)}, which is equal
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to 0, i.e. if there exists a system {�i}ki=1 with not all �i equal to zero, such that

�1 ∗ c(1)
$(�1) + �2 ∗ c(1)

$(�2) + · · · + �k ∗ c(k)
$(�k) = 0: (29)

Elements of S, which are not linearly dependent, are linearly independent. That is, the elements
c(1); c(2); : : : ; c(k) ∈S are linearly independent, if (29) is possible only for the trivial linear combina-
tion, such that �i = 0 for all i = 1; : : : ; k.

5.3. Linear mappings in quasivector spaces

Let Q1 = (Q1;+;R; ∗), Q2 = (Q2;+;R; ∗) be two quasivector spaces over R and let ’ :Q1 → Q2

be a homomorphic (linear) mapping, that is

’(x + y) = ’(x) + ’(y); (30)

’( ∗ x) =  ∗ ’(x); x; y∈Q1;  ∈R: (31)

It is easy to check that ’(x−) = (’(x))−; more generally any linear mapping satis6es:

’(�1 ∗ x(1)
$(�1) + �2 ∗ x(2)

$(�2) + · · · + �k ∗ x(k)
$(�k))

= �1 ∗ ’(x(1))$(�1) + �2 ∗ ’(x(2))$(�2) + · · · + �k ∗ ’(x(k))$(�k); (32)

where �1; �2; : : : ; �k ∈R, x(1); x(2); : : : ; x(k) ∈Q1. In particular:

’(� ∗ x + � ∗ y!) = � ∗ ’(x) + � ∗ ’(y)!; x; y∈Q1;  ; !∈R: (33)

Obviously condition (33) completely characterizes a linear mapping and can substitute conditions
(30) and (31).

Let S be a symmetric quasivector space and x(1); x(2); : : : ; x(n) ∈S and let Sn = (Rn;+;R; ∗) be
the canonic symmetric quasivector space de6ned in Example 2. The mapping ’ :Sn → S, such that

’(�1; �2; : : : ; �n) = �1 ∗ x(1)
$(�1) + �2 ∗ x(2)

$(�2) + · · · + �n ∗ x(n)
$(�n); (34)

is linear. Indeed, using Theorem 1 we have

’((�1; �2; : : : ; �n) + (�1; �2; : : : ; �n)) = ’(�1 + �1; �2 + �2; : : : ; �n + �n)

=(�1 + �1) ∗ x(1)
$(�1+�1) + · · · + (�n + �n) ∗ x(n)

$(�n+�n)

=�1 ∗ x(1)
$(�1) + · · · + �n ∗ x(n)

$(�n) + �1 ∗ x(1)
$(�1) + · · · + �n ∗ x(n)

$(�n)

=’(�1; �2; : : : ; �n) + ’(�1; �2; : : : ; �n);

’(� ∗ (�1; �2; : : : ; �n)) = ’(|�|�1; |�|�2; : : : ; |�|�n)
=(|�|�1) ∗ x(1)

$(|�|�1) + · · · + (|�|�n) ∗ x(k)
$(|�|�n))

=(|�|�1) ∗ x(1)
$(�1) + · · · + (|�|�n) ∗ x(k)

$(�n))

=|�| ∗ ’(�1; �2; : : : ; �n) = � ∗ ’(�1; �2; : : : ; �n):
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Denote e(i) = (0; 0; : : : ; 0; 1; 0; : : : ; 0), where the component 1 is on the i-th place. We consider e(i)

as elements of Sn, where opp(e(i)) = e(i)
− and @e(i) = e(i). Relation (34) implies

’(e(i)) = �i ∗ x(i)
$(�i)|�i=1 = x(i); i = 1; : : : ; n: (35)

The mapping ’ is the only linear mapping from Sn to S with the property (35). Indeed, if (35)
holds, then by (32),

’(�1; �2; : : : ; �n) =’
(∑

�i ∗ e(i)
$(�i)

)
=
∑

�i ∗ ’(e(i))$(�i) =
∑

�i ∗ x(i)
$(�i):

We thus obtain that relation (35): ’(e(i)) = x(i); i= 1; : : : ; n, is suNcient to determine the mapping
(34). As in the case of vector spaces, every mapping of the set (e(1); : : : ; e(n)) into S of the form
’(e(i)) = x(i); i = 1; : : : ; n, can be extended to a unique linear mapping of Sn into S.

5.4. Basis in a symmetric quasivector space

Let S be a symmetric quasivector space over R. The set {c(i)}ki=1, c(i) ∈S, k¿ 1, is a basis of
S, if c(i) are linearly independent and S = span{c(i)}ki=1.

To demonstrate the selfsuNciency of the theory of quasivector spaces, we give a proof of the
next proposition using entirely “quasivector” concepts.

Proposition 5. S is a symmetric quasivector space over R. A set {c(i)}ki=1, with c(i) ∈S, k¿ 1, is
a basis of S, i8 every f∈S can be presented in the form (28) in a unique way (i.e. with unique
scalars �i).

Proof. Assume 6rst that {c(i)}ki=1 is a basis of S, that is S = span{c(i)}ki=1, and every element of
S can be written in form (28) with suitable scalars �i. We have to show the uniqueness of this
representation, i.e.:

k∑
i=1

�i ∗ c(i)
$(�i) =

k∑
i=1

�′i ∗ c(i)
$(�′i )

; (36)

implies �i = �′i for i = 1; : : : ; k. Indeed, from (36), by means of the quasidistributive law, we obtain
k∑

i=1

(�i ∗ c(i)
$(�i) + (−�′i) ∗ c(i)

$(−�′i )
) =

k∑
i=1

 i ∗ c(i)
$( i) = 0; (37)

where  i =�i−�′i . From (37), using that {c(i)}ki=1 are linearly independent, we obtain  i =�i−�′i =0,
which proves uniqueness.

Conversely, let us suppose that the system {c(i)}ki=1, c(i) ∈S, k¿ 1, is chosen in such a way that
every element d of S can be written in the form d =

∑k
i=1 �i ∗ c(i)

$(�i) with unique scalars �i ∈R.
Then S= span{c(i)}ki=1. It remains to prove that {c(i)}ki=1 are linearly independent. Indeed, assume
that for some scalars �i; i = 1; : : : ; k, the equality

k∑
i=1

�i ∗ c(i)
$(�i) = 0 (38)
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holds. Equality (38) holds for the trivial linear combination, hence
∑k

i=1 �i ∗ c(i)
$(�i) =

∑k
i=1 0 ∗ c(i).

Using the assumed uniqueness of the representation we obtain �i = 0 for all i = 1; : : : ; k, that is,
(38) can only hold for a trivial linear combination. Therefore the elements {c(i)}ki=1 are linearly
independent, and hence form a basis for S.

Let S be a symmetric quasivector space over R and {c(i)}ki=1 be a basis of S. Assume that
a =

∑k
i=1 �i ∗ c(i)

$(�i); b =
∑k

i=1 �i ∗ c(i)
$(�i) are two elements of S. Their sum is

a + b =
k∑

i=1

�i ∗ c(i)
$(�i) +

k∑
i=1

�i ∗ c(i)
$(�i) =

k∑
i=1

(�i + �i) ∗ c(i)
$(�i+�i): (39)

Multiplication by scalars is given by

� ∗ a =
k∑

i=1

|�|�i ∗ c(i)
$(�i) =

k∑
i=1

|�|�i ∗ c(i)
$(|�|�i): (40)

To every a =
∑k

i=1 �i ∗ c(i)
$(�i) ∈S we associate the vector (�1; �2; : : : ; �k). Then, minding formulae

(39), (40), we de6ne addition and multiplication by scalars by means of (8), (9), arriving thus to
the canonic symmetric quasivector space Sk = (Rk ;+;R; ∗) considered in Example 2.

As we know, negation in S is the same as identity. Conjugation in S coincides with opposite:
a− = opp(a) =

∑k
i=1 �i ∗ c(i)

−$(�i) =
∑k

i=1 (−�i) ∗ c(i)
$(−�i). This implies in terms of Sk = (Rk ;+;R; ∗),

cf. (10):

(�1; �2; : : : ; �k)− = opp(�1; �2; : : : ; �k) = (−�1;−�2; : : : ;−�k):

Theorem 7. Any symmetric quasivector space over the l.o. #eld of reals R, with a basis of k
elements, is isomorphic to Sk = (Rk ;+;R; ∗).

Proof. Let S be a symmetric quasivector space spanned over a 6nite basis {s(i)}ki=1. The linear
mapping ’ :Sk → S, Sk = (Rk ;+;R; ∗), de6ned by

’(�1; �2; : : : ; �k) = �1 ∗ s(1)
$(�1) + �2 ∗ s(2)

$(�2) + · · · + �k ∗ s(k)
$(�k);

is a bijection. Hence ’ is an isomorphism.

Let S be a symmetric quasivector space spanned over a 6nite basis s(1); : : : ; s(k). Clearly, as in the
linear case, the number k of terms in the expression for the span does not change with the particular
basis, hence will be called dimension of S.

As every quasivector space Q is a direct sum Q=V⊕ S of a vector space V and a symmetric
quasivector space S, we can speak of basis and dimension of Q, whenever V and S have 6nite
bases. Namely, let V=Vl be a l-dimensional vector space with a basis (v(1); : : : ; v(l)) and let S=Sk

be a k-dimensional symmetric quasivector space having a basis (s(1); : : : ; s(k)). Then we say that
(v(1); : : : ; v(l); s(1); : : : ; s(k)) is a basis of the (l; k)-dimensional quasivector space Q=Vl ⊕ Sk .
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6. Concluding remarks

We have shown that every quasivector space is a direct sum of a linear subspace and a symmetric
quasivector subspace (Theorem 5). In the case of a 6nite basis the latter is isomorphic to the canonic
symmetric quasivector space Sk = (Rk ;+;R; ∗). These results allow us to decompose any algebraic
problem formulated in a quasivector space into two problems: a linear problem and a problem in
Sk = (Rk ;+;R; ∗). We have also shown that the latter space is equivalent in the sense of De6nition
3 to the vector space (Rk ;+;R; ·). Thus, practically, computation in a quasivector space is reduced
to computation in vector spaces.

More speci6cally, assume that we have a problem formulated in a quasilinear space of monoid
structure (M;+;R; ∗)—one may think of M = K or M = I(R)—the set of intervals on R. To refor-
mulate the problem in the induced quasivector space (D(M);+;R; ∗) we 6rst represent all elements
A∈M involved as proper elements of D(M) of the form a = (A; 0). Then, using Theorem 5, resp.,
formulae (24), (25), we decompose the problem into one linear problem and one symmetric qua-
sivector problem (equivalent to a linear one), which are to be solved by means of usual techniques.
What remains is the interpretation of the results in the original space of monoid structure M which
depends on the particular problem. The possibility to present a space of intervals as a direct sum of
a vector and a symmetric quasivector space suggests that the midpoint-radius representation of inter-
vals is appropriate for the solution of interval arithmetic (algebraic) problems. Some investigations
in this direction have been performed in [9], where we con6ne ourselves in the semigroup of proper
intervals (intervals with nonnegative radii). The present study can be applied to the algebraically
more natural problem formulation involving generalized (proper and improper) intervals, cf. [4].

It is worth to mention that the meaning of Theorem 5 is transparent in the case of intervals;
however this transparency is lost in the case of convex bodies (even in the plane, say a triangle).
There exist substantially nonsymmetric convex bodies that are not representable as a sum of a vector
and a symmetric convex body. In fact, this makes the result interesting, with an expressed method-
ological character. Theorem 5 permits to every generalized convex body to assign a “center” of this
body. The advantage of this method is that we have a platform for easy algebraic computations. The
“disadvantage” is that we should care about interpretation and visualization of the new generalized
elements (similarly to what we do when using negative numbers).

In the present work we study in some detail the relation between a quasivector space (Q;+;R; ∗)
and the induced extended vector space (Q;+;R; ·;− ). We have demonstrated how this relation can
be used in the study of symmetric quasivector spaces. This relation seems to be methodologically
useful, e.g. whenever applying the theory of support functions for the solution of algebraic problems
involving convex bodies. The equivalence between the quasivector space of convex bodies and the
space of extended (diCerences of) support functions, cf. [18], shows that we can calculate with
extended convex bodies in the same way as we do with extended support functions.
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