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INTERVAL DIFFERENTIAL EQUATIONS

Svetoslav Markaov

Department of Mathematics
University of Sofia

Sofia, Bulgaria

I. INTRODUCTION

As in Markov (1973) we shall be concerned with the inter-
val space <I(R)},+,-,*>, where I(R) is the set of all compact
intervals on the resal line R. This space is an extension of the

familiar space <I(R),+,e> with aperations

A+ B = [aa,] ¢ [byb,] = [a + bysay ¢+ b] (AB e I(R)),

11t

aB = [m1n{ab1,abz},max{ub,].abz}] (a e R),
by means of the operation

A - B = [min{a1 - b1'62 - bz}lmax{a1 - b1!a2 - b2}}' (S]

INTERVAL MATHEMATICS 145 Copyright @ by Academic Press, Inc.
All rights of reproduction in any form reserved,
ISBN 0-12-518850-1



146 S. MARKOYV

The space <I(R),+,-,*> normed hy means of the interval
norm |[A| = ][a1,a2]l = max{la1|,|a2|} will be denoted by

<I(R),+;_p.r

>,

*[> is not linear,

The normed interval space <I(R),+,-,s,

for the equalities A - B = A + (- B) and A + B = A - (- B) do

not generally hold true. Nevertheless, <I(R),+,-,e ,|+*|> has a
very interesting structure, quite convenient for practical
purposes, that may be characterized as 'almost linear' or
'quasilinear'. This structure enables us to develop axiomati-
cally various interval theories, and in particular, a calculus
for interval functions.

In what follows we use the notations: - B = (- 1)B, A 8 B
= A+ (-B), A®B =A- (-B), wlA) = w([a,l.az]) = a, - a,
[A v B] = [min{a1,b1},max{a2,b2}] for A = [a1.a2], B = [b1,b2]
e I(R) (and, in particular, [a v B] = [min{a,B},max{a,B}] for
o,B & R).

The properties of<I(R),+,-,e> involving the familiar ope-
rations +, e are well-known. We give a list of the basic pro-

perties of <I(R),+,-,e> involving the cperation (S).

For A,B ¢ I(R), X e R,

i) A(A - B) = XA - AB;

Ba A).

]
n

ii) (- A) - B (-B) -A (orAeS3

For A, we R, An 2 0,

iii) (& + ulA AR+ pA;

i

iv) (A - u)A AA - uA.

For A, B, C, D € I{R) denote uy = (w{A) - w(C))(w(B)-w(D))
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and P (wiAa) - w(B))(w(C) - w(D)). Then,

vl (A + B) - (C + D)

(A -C) o (B -0), Uy < 0;

v
(an]
-

(A +C) - (B + D),

il
-

vi) (A - B) + (C - D) (A® C) - (B @&D), u, <0, ¥y 2 0,

(A@C)G(B@D).u2<0.u < 0;

vii) (A - B) - (C - D)

1]
r
[}

C] e (B_D)l

v
o
-
=
-
A
o
-

On the basis of the space <I(R},+,-,e,

> one can develop
a calculus for interval functions of real variable (that is,
mappings of the form £ : R » I(R)). The concepts of continuity,

limits and derivatives of interval functions can be introduced

in the familiar formal manner by means of the interval norm
and the operation (S), We thereby obtain the well-known con-
cepts of continuity and limits (cf. Moore (1966)), and a simple

and useful concept of derivative:

Ff[t] - lim F(t + h) - F[t) - (D]
h=+0 h

The operation (D) for differentiation is inverse to the
familiar integration of interval functions, which is in accor-
dance with the ideas of Moore (1966), Ratschek {1877) and many
others.

Some properties of the derivative (D) are given in Markov
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(1979). Here we continue our study of the properties of the de-
rivative (D), discussing therehy the differential equation
X*(t) = F(t,X(t)), where F is a continuous function of a real

variable t and of an interval variable X.

We also consider a generalization of the concept of limit

and the corresponding concept of derivative.

II. DIFFERENTIATION 0OF INTERVAL FUNCTION

OF A REAL VARIABLE

The derivative of the interval function F(t) = [F,l[t),
fz(t)} can be described by means of the derivatives of the

boundary functions ?1 and Fz as follows:

Proposition 1. The interval function F(t) = [F1(t],F2(t)] is

differentiable at t in the following two cases:

i) both F1 and Fz are differentiable at t, then:

FEC) = [f108) v FL08)]s

ii) the one-sided derivatives of F1 and F2 exist at t and

filt - 0) Fé(t + 0)

f
1

+ ! -
frlt 0) Fz(t 0),

f
1

then



INTERVAL DIFFERENTIAL EQUATIONS 149

Fr(t) = [f;(t - 0) v it . 03] = [Fé(t - 0) v FAlE + 0)].
An important characteristic of the interval function

F = [f,,f,] is the width-function w(F) defined by w(F;t)

= w(F(t)) = Fz(t) - F1(t). If w(F) is monotone in some interval

[a,B], we say that F is w-monotonic in [a,B]. We shall briefly

say that F is w-monotonic at t if F is w-monotonic in a neigh-

bourhood of t,

Example. The interval polynomial

_ B . 2 _ n
P(t) = Ag * A1(t tg] + Az(t tO] + e+ An(t tD]
T i
= ) At -t (1)
. i 0
1=0
is w-monotonic at every t #* tD' (1) is w-decreasing in [—m,tD]

and w-increasing in [to,m). The boundary functions Pyr Poo de-
fined by P(t) = [p1(t),p2(t]] are differentiable in (-m.tD) and

(t ), and the derivative of P can be calculated for t # t[J

n*”

according to Proposition 1, case i). At t = tD the function (1)

is not w-monotonic. However, the derivative P'[tg) can he

calculated be means of Proposition 1, case ii). It is easy to

obtain that

PI(t)

i}
pal
+
N
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N
—
e
i
+
+
+
3
peg
3
—~—
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for every t e R.

(k3

The derivatives P , k= 1,2,..., are interval polynomials
of the form (1), that are w-decreasing in [—w.tOJ. and w-incres-

sing in (tO,W). This can he briefly expressed by writing

w'(P[k];t) < 0 for t < tg’ w'(P(k);t) >0 for t > tﬂ‘ where
' (k) )

(kj;t) is the derivetive of w(P ) at t.

w! (P
Clearly, differentiebility of F at t does not necessarily
imply differentiability of w{F) at t; F'(t]) may exist but

w! (F;t) may not (cf. Proposition 1, case ii})). However, if F is

differentiable and w~meonotonic at t, then w(F) is also differen-
tiable at t. In this case instead of saying that F is w-increas-

ing 1in [a,B] we may write w'(F;t) 2 0, t e [a,B], etc.

Proposition 2. The interval functions F and G are differenti-

able and w-monotonic at t and the real function g is differenti-

able at t. Then

-n
—
c*
—
+

G'(t), if w'(Fs;tlw'(Gst) 2 0,
(F(t) + G(t})!

F'(t) & G'(t), if w'(F;t)w'(G;t) < 0;

[ Frie)

GPOt), if w'(F;t)w'(G;t) 2 0,

1
e

(F{t) - G(t))"'

F'it)

@

G'(t), if w!(F;t)w’(G;t)

A
O

F'(t)glt) + FlElp'(t), if w'(F;tlg(t)lg'(t)=20,
(F(tlgl(t))*' =
F'(t)glt) & F(tlg'(t), if w'(F;tlgl(tlg’(t)<O.

Proposition 3. If the interval function F is differentiable at

u, and the real function ¢ is differentiable at tD' where

0
ug = m(tn) then the composite function G : G(t) = F(e(t)) is

. - ' - ' '
differentiable at to and 0 (%) F (unlm (tn).
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Proposition 4. If F and G are differentiable and w-monotonic

in [a,B] and F'(t)

G'(t) in [a,B], then there exists an inter-

val constant C € I(R) such that

F(t) - G(t)

v
o

C, if wift)wlgt)

in
o

F(t) 8 G(t) = T, if wiftIw(Gt)

III. INTEGRATION AND DIFFERENTIATION

The familiar definition of & Riemann-integrable interval

function is: F = [f1,? is R-inteprable over an interval

21

D= [a v B] {symhbolically: F ¢ R{D)), if F1 and FZ are Riemann-

integrable over D. The Riemann integral of F ¢ B([a v 8]) over

[a v BJ is defined by

f

B B
/ ?1(t)dt. S f_(t)dt|, if o < B
2

B L o o ]
J F(t)dt = ¢ _ _ (2)
o B g

J Fz(t]dt, I ?1(t)dt , if a > 8.

L a a -
L

The relation between the derivative (D) and the integral

(2) is given in the fgllowing two propositions:

Proposition 5, If F is w-monotonic aon D= [a v B] and F' ¢ R(D),

then

B
S F'(t)dt = F(R) - F(a).
a
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Proposition 6. If F is a continuous interval function over

8
[a v B], then f F(sl)ds is a differentiable interval function
o.

at t & [a v B] and

4_

T F(s)ds) = F(t), t e [a v B8],

R it

According to the above proposition the function

G(t) = } F(s)ds {3)
o

is differentiable at every t e [a v 8]. Assume now that the
interval function G{t) is defined in a neighbourhood of a by
means of (3). Since G'(a + 0) = G'(a - 0} = F(a), we conclude
that G is differentiabhle at o (however, w(G;t) may not be diffe-
rentiable at t=a). By means of (2) we chserve that G(t) is w-
decresasing in [@ - €,a] and is w-increasing in [a,a + €], € > 0.
Thus the interval function G(t) defined by (3) for t ¢ [a - €,
a ¢+ s] has the following two properties:
1) G(t) is differentiable in [o - e,a + €];
2) G(t) is w-decreasing in [o - e,a] and w-increasing in
[0 + €],

We shall briefly say that the interval function G is ><-
like at o, if G is defined in a neighbourhood of a and satisfi-

2s 1) and 2). As an example of a ><-1like at t, function we may

0
point out the interval polyneomial (1) and its derivatives P’',
P",v4e « If G is ><-1like at a then G + C, C = const e I(R), is
alsa ><-like at a. Howevar, G - C may either he ><-like at «a,

or <>-1like at o, that is:
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1) G is differentiable in [0 - e,a + €],

2) G is w-increasing in [a - €,a] and w-decreasing in [a,a + €] .

Propesition 7 (Integration by parts). If F is continuous in

D= [a v B] and g is @ continuous real function in D and such

that sign ¢(t) = const, t € D, then

B B B t 8 t
S F(t)dt f glt)dt = 7 F()( S gls)ds)dt + [ g(t)( S F(s)ds)dt.
o a o o o a

Another integration-by-parts-proposition is the following:

Proposition 8. If F is differentiable and w-monotonic in

D= [avB] and g is differentiable in O and such that

w/{F;t)egl{t)g'(t) 2 0 for t € D, then

B P 8
Flt)egl(t) = [/ F'(t)glt)dt + f F{tlg’'(t)dt.
a a a

Remark. In case that w'(F;t)g(t)g'(t) < 0 we may write

B B B
Fltlg(t)] = J F'(t)glt)dt @ J F(t)g'(t)dt
a o a

by the additional assumption that sign (w(F'(t)g(t))

- w(F(t)g'(t))) = const for t e D.

Proposition 9 (Change of variable in an interval integral).

If F e B([a,b]) and g(t) is an increasing differentiable functi-

on defined over [u,B], such that g' s &([a,B]] and glal) = a,

gl(8) b, then

g
F(t)dt = f Flglt)lg'(t)dt.
a o

-
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Remark. Propositions 7 and 9 do not involve interval derivati-

ves and therefore are possihly well-known.

The Taylor's theorem takes its familiar form for interval

F(n)

functions F, such that F, F', F", ... , are ><-like at a

point tO'

Proposition 10. The interval function F is n + 1 time diffe-
(n+1)

rentiable in [t v to] and F e R([t v tU]]. If the functions

(n) w-increasing in [tD.t] in case that t > tO
F.F', e, P77 are ’
w-decreasing in [t,tD] in case that t < tD

then

= + F1! - + FH - 2,51 +
F(t) F(tO) F (to)(t tU) F (to)(t to] /21 o

t
. F(W)[tol(t - t)"/n! ¢ %! roEm gyt - s)ds.

tg

A similar proposition can be formulated for interval func-

F(n)

tions F such that F, F', ... , are <>-1like at tU:

Proposition 11. F is n + 1 time differentiahle and F(n+1) is

R-integrable in [t v t_]. If the functions

(n) [ w-decreasing in [tD't] if t >t

F,F',...,F are ©{, then

\ w-increasing in [t,to] if t < ty

Feo =( T PP e - £)t7at - Rp(m)

ie (n) g
0

of 7 PP - gptat v R ),
leQI(n]
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where Qo(n] = {0,2,4,...,2k}, n - 1 £ 2k € n; n1tn) = {1,3, ...,

28 + 1}, n - 1< 28 + 1 < n,

R(n) if n is odd 0 if n is odd
Ro(n) = 3 R1(n) = :
0 if n is even R(n) if n is even

ct

(n+1)

R(n) = (1/n!) [ F (s)(t - s)ds.

a

+

IV. THE INTERVAL DIFFERENTIAL EQUATION X' = F(t,X)

Consider an interval-valued function F(t,X) of two variab-
les of different type: a real variable t and an interval vari-
able X. We shall assume that t varies in some interval [to,t+a],
a > 0, and X takes values from some neighbourhood of XU' that
is a set of intervals of the form {X : [X - X,] < 8, X e I(R)}

where B > 0, The domain of F = F(t,X) will be denoted by D,

IA

ies D= {(t,X) : t, =t <t, +a, |X-X,] <B}. Fis conti-

y) 0 DI

nuous in D if for every € > 0 there is a § = &(e), such that

[F(t,X) - Flt,,X,)]| < e whenever (t,X),(t,,X,) ¢ D, |t - t [<6,

1
[x - X1| < 8. F satisfies a Lipschitz condition with respect to

X on B if there is a real k > 0 such that

|FlE, X0 - FLE X0 < k[X, - X,

for every (t,X,),(t,X;) e D,
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Consider now the interval differential eguation X' = F(t,X)

9’ where X0 is a given interval.
We shall be looking for an interval T = [tD‘tTI
function X, differentiable on T and such that: 1) X(tD] = X

with initial condition X(to] = X

and an interval

D:

2} X'(t) F(t,X(t)) for every t e T.

Example 1. Consider the problem:

X'(t) C (C e I(R)) (E1)

X(o) = 0.

There are infinitely many differentiable interval functi-
ons X, that are solutions of {E1) in the interval T = [0,=),

For instance, the function

Ct, for 0 £t € n,

P C(t - 2p), for t > p

is a solution of (E1) for every choice of the positive paramet-
re p.

This example shows that even the solution of the simple
problem X' = Const, X(to) = X is not unique. However, there is

a unique solution to (E1) that is w-increasing in [0,«); this

is the function XD(t] = Ct.

Example 2. Consider the interval differential problem

X*(t) = F(t) (E2)

X[t03

]
>

Integrating X'(s) = F(s) for tO < s ¢ t we obtain
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t = ot

t
X'(s)ds = f F(s)ds. In order to 'solve' the integral in the
t
0 0

left-hand side we have to require that X is w-monotonic in

[tn,t]. If w(XO) = 0 then X can be only w-increasing in Ito,t].

If w(XO] > 0 then X can be also w-decreasing in some interval

[to,tD + €]. Assume that X is w-increasing. Then, according to
t
Proposition 5, we have X(t) - X(to) = [ F(s)ds and, since
ty
t
w(X(t)) > w(X{tD]),we may write X(t) = X(ty) + / Fl(sl)ds. Thus,
t

a

by integrating (E2) and using Proposition 5 we arrive fto a w-

increasing solution

t

X(t) = XO + ] F(s)ds.
+.
"0

Examples 1 and 2 show that it is natural to look for w-

monotonic solutions and especially for w-increasing solutions

.
04

to want them to he w-decreasingl). In mast caeses it is easy to

in fto,t1j (when caonsidering solutions in [tq,t it is natural

obtain all snlutions from a2 w-monotonic solution by a simple
procedure.

We thus arrive to the following formulation of the problem:

Prohlem. Given are a real number tO' an interval XO and an

interval-valued function F = F(t,¥) of a2 real and an interval
arguments, which is continuous in the set D = {{t,X) : t; < ¢t

= tU +oa, X - XO: < B} where o, B are some positive numbers.

Find an interval T = [tg'tg + a,]s 0 < a, £ aand an interval

function X, differentiahle on T and such that

i) |x(t) - Xn i

< B for t e T;
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ii) X'(t) F(E,X(t)) for t e T,

iii) X(tO) Xﬂ.

iv) X is w-increasing on T,

In this section we shall briefly denote this problem by

X' = F(th) (4)

X[to] = XD.

Proposition 12. If the interval T and the interval function X

are solutions of (4) then X satisfies the interval integral

gquation

F(s,X(s))dT, for t e T, (5)

3
(o
1
>
+
o+~ o

and conversely, if X is & continuous interval function, satisfy-

ing (5} in some interval T, then T and X are solutions to (4).

The following proposition gives & sufficient condition for

existence and unigqueness of solution of (4).

Proposition 13, Given are tO e R, XD ¢ I(R]), and two positive

numbers a, B. If the interval function F(t,X) is continuous in

D= {(t,X) + t, €t <ty + a [X- X, <8} and |F{£,X)| € u in

0 - a OI

D, then there exists a solution X = X(t) of (4) in the interval

T o= [tgety * min{a,8/u}]. If, in addition, F satisfies a

0
Lipschitz condition with respect to X on D, then this solution

is unique.
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Example 3. Consider the problem

xt = 3x%/3 (E3)
X{0) = 0

where X2/3 = {x2/3 & X},
The function F(t,X) = 3X2/3 in (E3) is not Lipschitzian

with respect to X. There are infinitely many solutions of (E3).
Three such solutions are X1(t) =0, Xz(t] = t3 and Xa(t]

= [0,1]t3 for t e [0,=).

Example 4. Consider the problem

Xl

it

a(t)x + B(t) (E4)

X(tD] X

DI

where alt) is a real-valued continuous function with constant
sign on some interval T and B(t) is & continuous interval func-
tion defined on T.

The unique solution of (E4) on T is given by

X = ((X, + X)) + (X, - XZ))/Z.

where
t -1
X1(t) = w(t](XD + [ ¢ (s)B(sl)ds]),
t
0
-1 t
Xz(t] = 9 (t]()(O + [ p(s)B(sl)ds)
o
t ~1
and o(t) = gxp( [ als)ds), o (t) = 1/¢(f).
t

0
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If a(t) > 0 then

X(t) = ([X1(t] + Xz(t]] + (X1(t) - Xz(t)])/Z (6)
t -1
= X1(t) = m(t)(XD + [ 9o (s)B(s)ds).
t
0
Consider the problem
x' = a(t)x + b(t), X(tD] = c, (7)

where c varies in some interval C and b(t) varies in some inter-
val function B(t) (i.e. b(t) € B(t) for t € T ). Denote the
solution of (7) by x(b,c3;t). Then, using (6), we see that

for a(t) > 0

{x(b,c;t): b(t) € B(t), c e C} = X(t)

where X(t) is the solution of (E4).
Similar consideration may find place in some optimal cont-

rol problems as the following example shows:

Example 5. Consider a control system described by the linear

differential equation

x'(t)

alt)x(t) + b(tlu(t) + cl(t) (ES)

x(tD) X

Ul
where x and u are respectively the state and control variables;
a, b, c are integrable in some interval T and a(t) > 0 in T.

Let U(t) be a continuous interval function on T. Define the set
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Q, of admissible controls for s e [tD.t] by

Qt = {u ¢+ u is measurable, u{s) ¢ U(s) for tD < s < t},

The attaeinable set for the prohlem (E5) is defined by
Alt) = {xn[t] PoXo satisfies (ES5) for u ¢ Qt}.
It is to be noted that A(t}) is an interval w-increasing

function of t. Moreover, A(t) is a solution of the intervel

differential problem

X' (t) alt)X(t) + b(tIU(t) + c(t)

X[tO] X

OI
In other words we obtain the equation for the attainable

set simply by putting U instead of u in (E5),

V. EXTENDED SEGMENT ANALYSIS

Our considerations by now outline a theory that might be
called extended interval analysis. This theory i1s an extension
of the interval analysis as initidted by Moore (1965) by intro-
ducing the aperation (5) for subtraction.

In an analogous way we may extend the segment analysis as

proposed by Sendov (1980) by means of the subtraction (S). We
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thus obtain a very interesting theory that may be called extend-
ed segment analysis.,.

The main difference between the interval analysis and the
segment analysis consists in the different concepts of 1limit.
The segment limit (S-1imit) of an interval function F = [F1,F2],

defined in a neighbourhood of t, at t is:

Slim F(r) = [lim f, (1), Tim £,(1)] (8)
>t T+t >t

where, as usually,

lim F1(s] = sup inf f1(T),
T+t §>0 D<ft-T1]<$
lim Fz(s) = inf sup fz(T).
T+t §>0 0<|t-1]<$

The following proposition shows the natural relation

between the operation 'v' and the concept of S5-1limit:

Proposition 14, If the interval functions F and G are defined

in a neighbourhood of %, then

Slim (F v G)(t) = Slim F(t) v Slim G(t).
T+t T+t >t
An important class of interval functions, introduced and
studied in the segment analysis, is the class of S-continuous
functions, An interval function F is S-continuous in the inter-

val D, if Slim F{t)C F(t) for all t € D. This definition and
>t

definition (8) can be extended for interval function of several
(real and/or interval) variables in the usual manner.

We define the S-derivative of an interval function F by
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mezans of the subtraction (S) and the S-limit (8):

Definition. If F is an interval function defined in a neighbour-
hood of t, then the S-derivative of F at t is the interval

Ff(t) = S1im ELE * h:\ - Flt) (9)

h=+0

Now we can consider the interval differential problem

X' = F(t,X), X(to) = XO' (10)

where F is S-continuous in a neighbourhood D of (tU.XO), where
D= {(t,X) : t, £ t <t +a, [X-X

0 0
ve X' is taken in the sense of (9).

D| < B}, and the derivati-

By a solution of (10) in T = [tD.t0 + a,], a2 a,, we mean
a continuous interval function X = X(t) such that:
1) [X(t) - XDI < B for t e T;
2) X is w-monotonic;
3) X(tD] = Xg» and
4) X'(t) = F(t,X(t}) a.e. in T (X' defined by (9)).

Proposition 15. If F(t,X) is S-continuous, bounded and inclu-

sion monotonic with respect to X in B, then there exists an
interval T and a continuous in T interval Ffunction X(t) that is

a solution of (10} in T.
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