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Abstract: We consider a technique for the exact presentation
of the range of a certain class of monotone functions of many
variables by means of interval-arithmetic expressions

involving nonstandard interval arithmetic operations.

1. Introduction.

By I(D), ID<R', we denote the set of all intervals
(interval vectors) on D. For the interval XeI(D) we shall

write X=[x,x]=( [x,x ] ). =( X )

n
i=1 i i=

.-
Let f:D R be a real-valued function of n variables

defined in D. Denote by f*(X) the range of f on an interval

XeI(D), i.e.

*

f (X)={f(x) : xeX}

={f :
{ (X1’X2' ,xn) xlexi, XZEXZ, , xneXn},

and by f(X) the optimal interval hull of £ (X) [10], i.e.

f(X) = [inf f*(X) , sup f*(X)].

If £ is a continuous function then obviously £ (X)=f(X) holds

true.

We next define a class of functions [10] satisfying

certain monotonicity properties.

Definition 1. We shall say that x=(x1,x2,...,xn),

y=(y1,y2,...,yn)eR’1 are partially ordered and write X0y,
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W4

!
1 1 1

if x o 'y for each i=1,2,...,n, where %e{f =z}, = and
being the usual order relations in R.

Denote by 9 the class of all order relations o

(0.,0,...,0); there are obviously 2" such relations in 9.
Definition 2. A function  f:D-R, IxR, belongs to M(D), if
there is a partial ordering oz(%,oy...,oJeﬂ, such that for
each x,yeD, xoy implies f(x)=f(y).
Remark. A function feM(D) 1is <called in [10] obligatory
(mandatory) monotone. Roughly speaking, a function feM(D) can
be differently monotone with respect to the different
components, that 1is f may be isotone (monotonically
increasing) with respect to some components and antitone
(monotonically decreasing) with respect to other components.
The exact presentation of the range of a function over
compact intervals 1s an important precondition for the
construction of effective inclusion algorithms. The wusual
interval arithmetic [2,9] allows us to obtain in general
(inner and outer) inclusions for the ranges (see [1,4,5]),
that can be sometimes very rough. Exact presentations for the
ranges (which are special cases of inclusions) can be seldomly
obtained by means of usual interval arithmetic. A special
situation when these inclusions degenerate 1into exact
presentations is considered in [9]. This is the situation when
the function 1s equally monotone with respect to all
components, that 1is either isotone with zrespect to all

components or antitone with respect to all xl's. However, this

is only a very special case of a function from M(D).
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The extended interval arithmetic [3,6,7,8], which 1is
shortly summarized in Sec. 2 of this paper, is a suitable tool
to extend the possibilities for the exact presentation of
the range of an arbitrary function belonging to M(D). By
choosing the domain D in a suitable way, this tool can be
further applied to an important set of functions, which 1is
often used in Numerical Analysis [11]. These functions can be
defined by algebraic expressions involving arithmetic
operations and standard functions of certain types.

Using extended interval arithmetic operations we can find
exact presentations for the range of functions belonging to
M¢D) 1in the form of interval-arithmetic expressions. Our

results can be considered as generalizations of Propositions

1-4 in [7].

2. Extended Interval Arithmetic.

Denote by R the set of real numbers and by I(R) the set
of all compact intervals on R. Denote by x and i, §SQ , the
end-points of XeI(R), i.e. X=[x,x]. The width of X will be
denoted by w(X)=§—§. For our purposes, we shall make use of one

more end-point-wise presentation of an interval X. By x° and

x"® we shall mean the end-points of X such that | x| <|x°|;
that is x'° is the end-point of X which is closer to zero than
x°. More precisely, we define

o lxl=1x], o Ixl=1x],

"
+
“O
—
I
b
]
”O
—_—
"l

x otherwise; X otherwise.

We then write X=[x°vx'®]. 1In this notation it is not



216 N. Dimitrova, S. Markov/On the interval-arithmetic presentation of ranges

explicitly pointed out which end-point is the left one and
which is the right one.

The extended interval arithmetic operations are

introduced as followsg [3,6,7,8]. For X,YeI(R), X=[>_§,>—<]=[X+OV

x 9], Y=[Z;§]=[Y+OV Y_O] we define:
X+ ¥=1[x+y, x+3],
X—Yz[’—c'{";“X];
X x Y = [x_oy_o v x+oy+°] if 0 ¢ X,Y;
X /Y = [X—o/y+o v X+o/y—o] if 0 e X, Y;
X+Y=[>_<+§VQ+Y];
K-t =x-y v -3
X x Y = [x_oy+0 v X+oy-o] if 0 ¢ X,Y;
X /Y= [x°/y° v x0/y"°) if 0 ¢ X, Y.

Multiplication and divigion for 0eX,Y will not be used in

the sequence and therefore will not be introduced here. For

this special case consult for example [6].

Furthermore, we make use of the following relations [8]:

Lemma 1. Let «,B,7,38¢<R. Then

a) [ (a+B) v (7+8)]

4{ [ava] + [gvs] if (a-7) (B-3)=0,

lavy] + [Bvs] otherwise;

I

[ova] = [gvs] if (a=7) (B=8)=0,
by [ (a-B)Vv(7-38) ] { 1= [hve]

[avy ] — [pvs] otherwise;

Lemma 2. Let «,B,7,8€R Such that ay>0 and B8>0. Then

[CXV'B'] S i f a—w)(B_(SI)ZO/
a) [<as>v<75)]={ < [pvs] it (la|-1v]) (|8]-]

[evy] % [Bvs] otherwise;
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lavy] / [Bv8] 1if (|a|-|¥|) ([B]-|8])=0,
b) [(a/B)V(¥/8)]=
[avy] / [Bv8] otherwise;

We shall also make use of the following results for
functions of one variable. In the following four propositions
{7] it is assumed that f is a monotone function on D, D<R, and
f is representable as f=f1*f2, *=+ — x,/, resp., according to
the proposition, and f1’ f2 are also monotone on D. The

following notations are used concerning the intervals fi(X),

i=1,2, X=[x,x]:

o
Hh
>

Il

£ (x)-f (X)),

i i - i

(£ (X))=]f (x)|-]f (x)], i=1,2.

Proposition 1. If f=f1+f2 then for every XeI (D)

£(X) + £(X) 1f d(f (X)).d(f (X)) = 0,
f(X) =
£ (X) + £,(X) otherwise;
Proposition 2. If f=f1—f2 then for every XeI (D)
(X)) =0,

£(X) = £(X) if d(f (X)).d(f
£ (X) =
f (X) - fz(X) otherwise.
Proposition 3. If f=f1xf2 and fi(x)¢0 for every xeX, 1i=1,2,
then for every XeI (D)
£(X) x £(X) if r(f (X)).r(f,(X)) = 0,
£(X) =

f1(X) b ¢ fZ(X) otherwise.

Proposition 4. If f=f1/f2 and fi(x)io for every xeX, 1i=1,2

then for every XeI (D)

£ (X) / £ (X) 1if 4d(f (X)).d(f (X)) = O,
f(X) - 1 2 1 2
fl(X) / fz(X) otherwise.
Remark 1. The condition d(f_ (X)).d(f_(X))=0 (resp.
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r(fl(X)).r(fz(X))ZO ) means that the functions f1 and f2
(resp. [f | and |f |) are both increasing or both decreasing
on X

Remark 2. A generalization of Proposition 3 in the situation
when £ = f1Xf§“"an and all functions are either increasing
or decreasing on X may be obtained in natural way, namely
f(X)=f1 (X)xfz(X)x. . .xfn(X) .

3. Exact interval-arithmetic presentation of ranges of
functions of many variables belonging to M(D).

We shall now propose a technique to obtain
interval—-arithmetic expressions for the interval f£(X) in the
situation when feM(D), IxR', and f is representable as a sum,
difference, product or quotient of two other functions, i.e.
f=f1*f2, xe{+,-,%x,/}.

Let feM(D). We define two sets of indices TI,J¢
{1,2,...,n}uws with InJ=¢ and IuJ={1,2,...,n}. According to
Definition 2, there exists a partial ordering °=(%'°y""°n)'
corresponding to f such that 05{5,2}, i=1,2,...,n. We define
I as the set of all indices i, such that 0 ==, and J as the
set of all indices j, such that %=z.

Let X=([x

x )]

1=1eI(D). We define the real wvectors

i

u(f;X)=(u1,u , e, ) and V(f;X)=(V1,V

5 N .,V ) in the

2/ " n

following manner:

x.  for ieI, X, for ied,
u = _1 v, o=

El for ieI;
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Then we can present the interval f£(X) in the form
(1) £(X) = [f(u(f;X)) , T(v(£;X))]
Denote by C the convex hull of the vectors u(f;X) and
v(f;X), 1i.e.

C = cofu(f;X), v(£;X))

{tu(f;X) + (1-t)yv(f;X) : te[0,1]}.
Obviously, C ¢ X holds true.
Let us assume that fzfl*fz, *el{+,~-,%x,/}. For the
functions f1 and f2 we introduce the intervals
(2) fi(C)=[fi(u(f;X)) v fi(V(fIX))], i=1,2,
and also the notations concerning these intervals
(3) a(t (C)) = fi(u(f;X)) - fl(V(fIX));
(4)  ©(£(C)) = [£ (u(E;X))| - |£(v(£;X))], 1i=1,2.
Theorem. Let feM (D), f=f1*f2, *e{+,-,%x,/} and the convex hull
C, the intervals fi(C) and d(fi(C)), r(fl(C)), i=1,2, are
defined as above. Then for every XeI(D) the following

exact interval-arithmetic ©presentations for the optimal

interval hull f£(X) hold true:

a) f= f1+f2
£ (C) + £ (C) if 4(f (C)).d(£_(C)) = 0,
f(X)= 1 2 1 2
fl(C) + fZ(C) otherwise;
b) f=f1-f2
= 0,

{ £ (C) = £.(C) if d(f (C)).d(£_(C))
f(X)= :

£ (C)y - £ (C) otherwise;

C) f=f1xf2, fi(x)¢0 for every xeX, i=1,2:
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1

f (C) x fZ(C) if r(f
£(x)={

fl(C) X fZ(C) otherwise;

d) f=f1/f2, fi(x)io for every xe¥, 1i=1,2:

. £,(C) / £,(C) if r(f (C)).r(£,(C)) = O,
(X)=
£ (C)y / fz(C) otherwise.
Proof.
a) Using (1) we get for f=f1+f2
£(X)=[£(u(f;X)), £(v(£;X))]

=[(£+ £) (u(£;X)) , (£+ £)(v(E;X))]

=[f, (u(f; X))+ (u(f;X)) , £ (v(£;X) YrE (V(E;X)) ]
From Lemma 1 a) it follows that

£(X)=[£, (u(£;X))VE (V(£;X)) ] + [£,(u(£;%))vE (v (£;X)) ]

IE (£ (u(f5%)) = (V(£;X))) . (£ (u(£;X)) =, (v (£;X)))=0

and

£(X)=[£, (u(£;%))VE (V(£;X))] + [£,(u(£;X))vE, (V(£;X))]

LE (£ (U(E;X))=£ (V(£;X))) . (£,(0(£;X)) £ (v (£;X)))<0.

Using (2) and (3) we obtain finally

f(X)={ £.(C) + £ (C) if d(f (C)).d(£,(C)) = O,

fl(C) + fZ(C) otherwise.

The verification of b) we get similarly using Lemma 1 b), (1),

(2) and (3).

¢) From (1) we obtain
E(X)={f(u(f;X)) , £(v(£;X))]
=[(£xE ) (u(£;X)) , (£xE) (V(£;%))]

=[£, (W(E;X) )xE, (W(£;%)) , £ (V(E;X))xE (V(E;%X))].

ot
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Using Lemma 2 a) it follows that

E(X)=[f (u(£;X))vE (V(£;X)) ] x [f (u(f;X))vE (v(£;X))] 1f

(JE, (u(E5%)) [ = £ (V(E; X)) |) - (£, (u(£5X)) [=|£,(v(£;)) |)=0

and

E(X)=[f (u(£;X))vE (v(£;X))] x [f

1 (u(£;X))vE (V(£;X))]

2

otherwise.

Using (2) and (4) we obtain

(C)) =0,

f(X)={ £.(C) x £,(C) if r(f (C)).r(f,

fl(C) X fZ(C) otherwise;

d) can be proved similarly using Lemma 2 b), (1), (2) and (4).
Remark 3. The intervals fi(C)=[fi(u(f;X)) v fi(v(f;X))] i=1,2,

can be presented in the form

£(C)=[f (tu(f;X)+(1-t)v(£;X)) |

i i t=1

£fo(tu(£;X)+(1-t)v(£;X)) | 1.

t=0
i.e. the end-points of the intervals fi(C) are equal to the
values of the functions fi(tu(f;X)+(l—t)v(f;X)) at the
end-points of the interval [0,1]. We can consider fi over the
convex hull C as functions of one variable t on the interval

[0,1]. We denote

A
£ (tu(£;X)+(1-t)v(£;X))=f (t), i=1,2.
A

If fi, i=1,2, are monotone (and continuous) with respect to t

then we obtain

£ (C)={f (tu(f;X)+(1-t)v(£;X) : te[0,1]}
A

=f ([0,1]), i=1,2.

Hence, the intervals fi(C) are equal to the ranges of the
A

functions fi(t) on [0,1]. In the situation when it is possible
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A A
to present fi(t) as f (t)=g

. 1 (t) for *e{+,-,x%x,/} we can
1

(t)*g

i2
then obtain interval-arithmetic presentations for fi(C) using

Propositions 1-4 from Sec. 2. Thus, the problem is reduced to

(t) etc.

obtain the ranges of the functions g“(t), 9.5

4. An example.

Let us consider the following function of n variables

(5) f(x1'X2"' CoX)=(X,7X) (X mX) (XX ) (X X)),

where 1<k<n. Let the real intervals X1’ Xz, .., Xn be such

that X&nXJ=® for i=j, 1i,3i=1,2,...,n , X1<X2<...<Xn and xieXi

for i=1,2,...,n. Denoting by x=(x1,x2,...,xn) and

Xz(Xlﬂg,...,Xn) we shall find interval-arithmetic expressions

for the range of the function (5), i.e. for the range
£(X) = {f(x) : xeX}
This problem will be solved under the following assumptions:

i) the integer (n-k) is odd, Zidﬂld(xk—xj)>0;

1%k j*1
JE"
« . . I n
ii) the integer (n-k) is even, Z?=JB=1(Xk-Xj)>O'
1#k  j#1
j¥Fk
o . . n
1ii) the integer (n-k) is odd, 2$=JTP1(XR_Xj)<O'
1%k j#1
j#Fk
. . . n
iv) the integer (n-k) is even, Zlﬂﬂﬁd(xk—xj)<o.
1%k j#1
j#k

We shall consider in details the situation in case 1i).

We denote
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Then f(x)=f1(x)xf2(x) holds true. To apply the Theorem c) from

Section 3 we have to verify the assumptions of this Theorem.

For this purpose, we compute the partial derivatives Bf/axv

i=1,2,...,n. Using the assumptions i) it is easy to see that
>0 for i=k-1,

(6) af/axi
<0 for izk+1;

(7) af/axk > 0.
From (6) and (7) we get for the real vectors u(f;X) and

v(£;X),

k-1’ Sk B &y
Let C=cof{u(f;X),v(f;X)}={tu(f;X)+(1-t)v(£;X) : te[0,1]}.
For fl(C) we obtain
£ (C)={(§-E)(E-E) ... (€ _
£2=t>_<2+(l—t)}_<2, ce. ., £ =tx +(1-t)X
Ek=t§k+(l—t)>_ck : te[0,1] }

= (5% (18) ((7%))) (B(X7K,) +(1-8) (X =%,) )x. ..

-k —k-1 1
={(E(W(X)=W(X )+ (X, =X ) (E(W(X)=W(X ))+ (X X)) )x
) ...x(t(w<xk)—;v(xk_1)>+<§<k—?<k_1>) : te[0,1])
={£,(t) : te[0,1]} = £ ([0,1]).
Let {i1'i2"“'ip} be a subset of the set of indices
{1,2,...,k-1}, such that W(Xl)ZW(Xk), 1=1,2,...,Dp, and
1
{jl,jz,...,jq} be the subset, for which w(Xj )<w(Xk),
1

=1,2,...,9q, holds true. Let us further present

(t)xglz(t), where
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g, (B)= TN_, (E(Ww(X )-w(X))+(x-x )),
1 1
9, (B) =TT, (E(W(X ) =w(X))+(x-% )
1 1
For te[0,1] the function g11<t) is increasing and g12(t) is
decreasing. Using Proposition 3 we obtain
A
£(C)=£ ([0,1]1)=g ([0,1]) x g _([0,1]).
The function g“(t) is a product of p increasing functions
over the dinterval [0,1] which do not vanish in [0,1] (see
Remark 2), from where it follows
(10,1])=(X =X )x(xk—xiz)x...x(xk-xip).

gll
1
Since the function gm(t) is a product of g decreasing and not

vanishing over [0,1] functions, we obtain
912([0'11 )=(Xk—Xj1)x(Xk—Xj2)x...x(Xk—qu).

Therefore,
fl(C)=((Xk—Xi)x...x(Xk-Xi y) x ((Xk-Xj )x...x(Xk-Xj)).
1 P 1 q
Let us now get an interval-arithmetic presentation for

f_(C). Analogously, we have
X,

2
£(C)=((§€,)---(§-E) , =tx+(1-t)x
gk+1=t§k+1+ (L=E)X, e En=t>_<n+(1—t) X te[0,1]}
=((E(E %)+ (I-E) (XX ))x. . ox
(B(x, =% )+ (1-8) (x,=x)) = t<[0,1]}
={(E(=w(X ) —W(X))*+ (X=X ))x. . .x
(t(-w(X)-w(X))+(x,-x)) : te[0,1])
S(£,(8) te[o,l]}%([o,l]).

2
A
The function fz(t) represents a product of n-k decreasing on
[0,1] functions, which do not vanish in [0,1], i.e.
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1%}
t2
n

n n-k-1
£ (0=, 9, (8),
g, (E)=t(=w(X )=w(X))+(X X ), i=1,...,n-k.

From Proposition 3 (and Remark 2) we obtain

£ (Cy=g_ ([0,1])xg_([0,1])x...xg,__ ([0,1])

=(X -X
k k+

1 )% (Xk_xk+

e X (R K,

since ga([o,l])=xk—X , i=1,2,...,n-k holds true.

k+i
Finally, we need the values r(fl(C)) and r(fz(C)) as they

are defined by (4):
r(f (C))=]f1(u(f=X))|—|f1(V(f:X))|
=l (x-x) e (x x| - xR o (x X)) |

=(x X)) .. (XX ) - (XX ). (XX )

=l (}—ik_)—(kn) e (l{k_}_{n) | B l (ik_gki-l) o (Xk_}—{n) I

Kk k+1) o (}ik_xn) a (Xk_}—clﬁl) U (Xk_}—(n) :
It is not difficult to verify that r(fz(C))>O holds true.
Using Theorem c) we obtain
fl(C) X fz(C) if r(fl(C))>O,
£(X)=
fl(C) X fZ(C) otherwise.
Replacing the intervals fl(C) and fZ(C) with the corresponding

interval-arithmetic expressions we obtain the following final

result:
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The remaining three cases can be treated analogously

ii) f(X)=((Xk—X1)x(Xk—X2)x...x(Xk—Xk_l)) X
(((Xk-Xk+l )><...><(Xk—Xk+i )) X ((Xk-Xk+J_ ) x. ..><(X}(—Xk+j )))
1 p 1 q
if r <o,
2
f(X)=((Xk—X1)x(Xk—X2)><...><(X _Xk—l)) X

if r >0,
2
where {i1'i ,---,1} 1is a subset of {1,2,...,n-k} such that
w(XkH)zw(Xk), 1=1,2,...,p, and {31,32,...,jq} is this subset

of {1,2,...,n-k}, for which W(Xk+j y<w(X ), 1=1,2,...,q holds,

k
1
and L= (zk_}—(ku) (l{k—}—{mz) o (}—{k_}'sn) I-
l (;(k—;{kﬂ) (;{k—imz) - (}_ck—}_{n) l
iii) f(X)=((Xk—X1)><(Xk—X2)><...x(Xk—-Xk_l)) X
(((X -Xk+. ) X x (X —XkH y) x ((X —Xk+j ) x. x (X --Xk+j ) ))
1 P 1 q
if r >0,
2

where {i1’i ,..-,1} 1is a subset of {1,2,...,n-k} such that

w(Xk+i)sw(Xk), 1=1,2,...,p, and {31,32,...,jq} is this subset

of {1,2,...,n-k}, for which w(Xk+J )>w(Xk), 1=1,2,...,q holds,
1

+1) (Xk—xmz) e (;{k_gn) I_

| (x,-x ) (x-%x _)...(x-x)].

=k —k+1 —k —k+2 =k —n
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iv) B =0 =X )xe (X=X )) X (X=X )x...x(X =X )))
1 P J1 Jq

x ((X =X

X)X (X =K ) Af 1 >0,

£(X)= (X=X )x.. (X=X )) X ((X=K )x...x(X=X )))

1 P 1 q
X ((Xk—Xhi)x...x(Xk—Xn)) if r1<O,
where {il,iz,...,ip} is a subset of {1,2,...,k-1} such that
w(Xi)sw(Xk), 1=1,2,...,p, and {jl,jz,...,jq} is this subset
1
of ({1,2,...,k-1}, for which w(Xj y>w(xk), 1=1,2,...,q9 holds,
1
r1=| (Xk—xl) (xk—xz) e (Xk_xk—l) I_I (§k_§1) (}—{k_zsz) e (§k-}—{k—1) I .

This study has been partially supported by the Ministry
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