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ABSTRACT
It has been recently shown that computation with stochastic
numbers as regard to addition and multiplication by scalars
can be reduced to computation in familiar vector spaces.
This result allows us to solve certain practical problems
with stochastic numbers and to compare algebraically ob-
tained results with practical applications of stochastic num-
bers, such as the ones provided by the CESTAC method.
Such comparisons give additional information related to the
stochastic behavior of random roundings in the course of
numerical computations. A number of original numerical
experiments are presented that agree with the expected the-
oretical results.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Probabilis-
tic Computation; G.1.3 [Numerical Analysis]: Numerical
Linear Algebra—error analysis, linear systems; G.3 [Probability
and Statistics ]: Stochastic Processes; I.6.8 [Simulation
and Modeling]: Monte Carlo

General Terms
Reliability, Experimentation, Theory, Verification

Keywords
stochastic numbers, stochastic arithmetic, standard devia-
tions, s-space, linear stochastic system, CESTAC method.
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Stochastic numbers are gaussian random variables with a
known mean value and a known standard deviation. Some
fundamental properties of stochastic numbers are considered
in [3], [8].

The mean values of the stochastic numbers satisfy the
usual real arithmetic, whereas standard deviations are added
and multiplied by scalars in a specific way. As regard to
addition the system of standard deviations is an abelian
monoid with cancellation law. This monoid can be em-
bedded in an additive group and after a suitable extension
of multiplication by scalars one obtains a so-called s-space,
which is closely related to a vector space [1], [4]. This allows
us to introduce in s-spaces concepts like linear combination,
basis, dimension etc. Thus, in theory, computations in s-
spaces are reduced to computations in vector spaces. This
enables to find explicit expressions for the solution of certain
algebraic problems involving stochastic numbers.

In practice, stochastic numbers are computed using the
CESTAC method, which is a Monte-Carlo method consist-
ing in performing each arithmetic operation several times
using an arithmetic with a random rounding mode, see [2],
[6], [7].

In Sections 2 we briefly present the main results of our
theory of s-spaces as regard to the arithmetic operations
for addition and multiplication by scalars needed for the
purposes of this study; for a detailed presentation of the
theory, see [4]. Section 3 considers the algebraic solution of
linear systems of equations which right-hand sides involve
stochastic numbers. In Section 4 we extend our idea from
[5] to compare the algebraic solution of a problem involving
stochastic numbers with the solution obtained numerically
by the CESTAC method. Several numerical experiments are
presented.



2. STOCHASTIC ARITHMETIC
By R we denote the set of reals; the same notation is

used for the linearly ordered field of reals R = (R,+, ·,≤).
For any integer n ≥ 1 we denote by Rn the set of all n-
tuples (α1, α2, ..., αn), where αi ∈ R. The set Rn forms a
vector space under the familiar operations of addition and
multiplication by scalars denoted by V n = (Rn,+,R, ·), n ≥
1. By R+ we denote the set of nonnegative real numbers.

A stochastic number X = (m; s) is a gaussian random
variable with mean value m ∈ R and (nonnegative) standard
deviation s ∈ R+. The set of all stochastic numbers is S =
{(m; s) | m ∈ R, s ∈ R+}.

The arithmetic for stochastic numbers. Let X1 =
(m1; s1), X2 = (m2; s2) ∈ S. Addition and multiplication
by scalars are defined by:

X1 +X2 = (m1; s1) + (m2; s2)
def
=

�
m1 +m2;

q
s2

1 + s2
2

�
,

γ ∗X = γ ∗ (m; s)
def
=

�
γm; |γ|s

�
, γ ∈ R.

A stochastic number of the form (0; s), s ∈ R+, is called
symmetric. If X1, X2 are symmetric stochastic numbers,
then X1 +X2 and λ∗X1, λ ∈ R, are also symmetric stochas-
tic numbers. Thus there is a 1–1 correspondence between
the set of symmetric stochastic numbers and the set R+.
We shall use special symbols “⊕”, “∗” for the arithmetic
operations over standard deviations, as these operations are
different from the corresponding ones for numbers. The op-
erations “⊕”, “∗” induce a special arithmetic on the set R+.
Consider the system (R+,⊕,R, ∗), where:

α⊕ β =
p
α2 + β2, α, β ∈ R+, (1)

γ ∗ δ = |γ|δ, γ ∈ R, δ ∈ R+. (2)

Proposition 1. [4] The system (R+,⊕,R, ∗) is an abelian
additive monoid with cancellation, such that for s, t ∈ R+,
α, β ∈ R:

α ∗ (s⊕ t) = α ∗ s⊕ α ∗ t, (3)

α ∗ (β ∗ s) = (αβ) ∗ s, (4)

1 ∗ s = s, (5)

(−1) ∗ s = s, (6)
p
α2 + β2 ∗ s = α ∗ s⊕ β ∗ s, α, β ≥ 0. (7)

A system satisfying the conditions of Proposition 1 is
called an s-space of monoid structure.

2.1 The Group System of Standard Deviations
For α ∈ R denote σ(α) = {+, if α ≥ 0; −, if α <

0}. We extend the operation addition “⊕” for all α, β ∈
R, admitting thus negative reals, corresponding to improper
standard deviations:

α⊕ β def
= σ(α+ β)

p
|σ(α)α2 + σ(β)β2|. (8)

Note that σ(α + β) = σ(σ(α)α2 + σ(β)β2) = σ(α ⊕ β) for
α, β ∈ R.

From (8) the monoid (R+,⊕) into is thus isomorphically
embedded in the system (R,⊕), which is an abelian group
with null 0 and opposite element opp(α) = −α, i. e. α ⊕
(−α) = 0.

Indeed, from (8) we have

α⊕ (−α) = σ(α− α)
p
|σ(α)α2 − σ(α)α2| = σ(0)

√
0 = 0.

Here are some examples of addition in the system (R,⊕):
1⊕1 =

√
2, 1⊕2 =

√
5, 3⊕4 = 5, 4⊕(−3) =

√
7, 3⊕(−4) =

−
√

7, 5 ⊕ (−4) = 3, 4 ⊕ (−5) = −3, (−3) ⊕ (−4) = −5,
1⊕ 2⊕ 3 =

√
14, 1⊕ 2⊕ (−3) = −2.

Using (8) we obtain for n ≥ 2

α1 ⊕ ...⊕ αn = σ(α1 ⊕ ...⊕ αn)
q
|σ(α1)α2

1 + ...+ σ(αn)α2
n|. (9)

Proposition 2. The equation α1 ⊕ α2 ⊕ ... ⊕ αn = β is
equivalent to σ(α1)α2

1 + ...+ σ(αn)α2
n = σ(β)β2.

Multiplication by scalars is naturally extended on the set
R of generalized standard deviations by: γ ∗ s = |γ|s, s ∈ R.
Multiplication by −1 (negation) is (−1) ∗ s = | − 1|s =
s, s ∈ R. To avoid confusion we shall write the scalars
always to the left side of the standard deviation. Under this
convention we have, e. g. (−2) ∗ 2 = 4, whereas 2 ∗ (−2) =
−4. Note that if s is a standard deviation, then we have
γ ∗ s = (−γ) ∗ s for any γ ∈ R.

It is easy to check that relations (3)–(7) hold true for
generalized standard deviations. This justifies the following
definition:

Definition 1. A system (S,⊕,R, ∗), such that:
i) (S,⊕) is an abelian additive group, and
ii) for any s, t ∈ S and α, β ∈ R relations (3)–(7) hold,

is called an s-space over R (of group structure).

The canonical s-space. For any integer k ≥ 1 the set
S = Rk of all k-tuples (α1, α2, ..., αk) forms an s-space over
R under the following operations

(α1, ..., αk)⊕ (β1, ..., βk) = (α1 ⊕ β1, ..., αk ⊕ βk),(10)

γ ∗ (α1, α2, ..., αk) = (|γ|α1, ..., |γ|αk), (11)

where αi ⊕ βi for αi, βi ∈ R is given by (8) and γ ∈ R. The
s-space Sk = (Rk,⊕,R, ∗) is called the canonical s-space (of
standard deviations).

2.2 Relations Between S-spaces and Vector Spaces

Proposition 3. Let (S,+,R, ∗) be an s-space over R.
Then the system (S,+,R, ·) where the operation “·”: R ×
S −→ S is defined by

α · c =

( p
|α| ∗ c, if α ≥ 0;

p
|α| ∗ (−c), if α < 0,

(12)

is a vector space over R.

Proposition 4. Let (S,+,R, ·) be a vector space over R.
The system (S,+,R, ∗), where “∗” is defined by

α ∗ c = α2 · c (13)

is an s-space over R.

Thus each of the two spaces (S,+,R, ∗) and (S,+,R, ·)
can be obtained from the other one by a redefinition of the
operation multiplication by scalars using (12), resp. (13).

Assume that S = (S,+,R, ∗) is an s-space over R and
(S,+,R, ·) is the associated vector space. From the vector



space (S,+,R, ·) we can transfer vector space concepts, such
as linear combination, linear dependence, basis etc., to the
s-space (S,+,R, ∗) [4]. Thus, it can be proved that any s-
space over R, with a basis of k elements, is isomorphic to
Sk.

Stochastic numbers can be defined as elements of the
direct sum V ⊕ S of a vector space V (of mean values)
and a s-space S (of standard deviations) both of same di-
mension k. Namely, let V = Vk be a k-dimensional vec-
tor space with a basis (v(1), ..., v(k)) and let S = Sk be a

k-dimensional s-space having a basis (s(1), ..., s(k)). Then

we say that (v(1), ..., v(k); s(1), ..., s(k)) is a basis of the k-
dimensional space Vk ⊕ Sk. Such a setting allows us to
consider numerical problems involving vectors and matri-
ces, wherein the numeric variables have been substituted
by stochastic ones. In the next section we consider such a
problem.

3. LINEAR SYSTEMS WITH STOCHASTIC
RIGHT-HAND SIDE

We consider a linear system Ax = b, such that A is a real
n×n-matrix and the right-hand side b is a vector of stochas-
tic numbers. Then the solution x also consists of stochastic
numbers, and, respectively, all arithmetic operations (addi-
tions and multiplications by scalars) in the expression Ax
involve stochastic numbers; therefore we shall write A ∗ x
instead of Ax.

Problem. Assume that A = (αij)
n
i,j=1, αij ∈ R, is a real

n × n-matrix, and b = (b′; b′′) is a n-tuple of (generalized)
stochastic numbers, such that b′, b′′ ∈ Rn, b′ = (b′1, ..., b

′
n),

b′′ = (b′′1 , ..., b
′′
n). We look for a (generalized) stochastic vec-

tor x = (x′;x′′), x′, x′′ ∈ Rn, that is an n-tuple of stochastic
numbers, such that A ∗ x = b.

Solution. The i-th equation of the system A∗x = b reads
αi1 ∗ x1 ⊕ ... ⊕ αin ∗ xn = bi. Obviously, A ∗ x = b reduces
to a linear system Ax′ = b′ for the vector x′ = (x′1, ..., x

′
n)

of mean values and a system A ∗ x′′ = b′′ for the standard
deviations x′′ = (x′′1 , ..., x

′′
n). If A = (αij) is nonsingular,

then x′ = A−1b′. We shall next concentrate on the solution
of the system A ∗ x′′ = b′′ for the standard deviations.

The i-th equation of the system A ∗ x′′ = b′′ reads αi1 ∗
x′′1 ⊕ ...⊕ αin ∗ x′′n = b′′i . According to Proposition 2, this is
equivalent to

α2
i1σ(x′′1 )x′′21 + ...+ α2

inσ(x′′n)x′′2n = σ(b′′i )b′′2i , i = 1, ..., n,

minding that σ(αij ∗ x′′j ) = σ(x′′j ).

Setting σ(x′′i )(x′′i )2 = yi, σ(b′′i )(b′′i )2 = ci, we obtain a
linear n × n system Dy = c for y = (yi), where D = (α2

ij),
c = (ci). If D is nonsingular we can solve the system Dy = c
for the vector y, and then obtain the standard deviation vec-
tor x′′ by means of x′′i = σ(yi)

p
|yi|. Thus for the solution

of the original problem it is necessary and sufficient that
both matrices A = (αij) and D = (α2

ij) are nonsingular.
Summarizing, to solve A ∗ x = b the following steps are

performed:
i) check the matrices A = (αij) and D = (α2

ij) for non-
singularity;

ii) find the solution x′ = A−1b′ of the linear system Ax′ =
b′;

iii) find the solution y = D−1c of the linear system Dy =

c, where c = (ci), ci = σ(b′′i )(b′′2i ). Compute x′′i = σ(yi)
p
|yi|;

iv) the solution of A ∗ x = b is x = (x′;x′′).

4. NUMERICAL EXPERIMENTS

4.1 Description of the experiments
Some numerical tests have been performed in order to

compare the theoretical results with the numerical results
obtained by means of the CESTAC method for imprecise
stochastic data.

Let a be a real vector of size N and let b is a stochastic
vector of same size N . According to the theory of the CES-
TAC method a stochastic number and consequently each
component bi of b can be represented by a k-tuple of gaus-
sian random values with known mean value m and standard
deviation s. In the CADNA software [2], [3] the method is
implemented with k = 3.

In the following experiments all the k-tuples for the com-
ponents bi have been generated with a gaussian generator
with m = 1, s = 0.001.

To experiment the validity of the preceding theory and its
concordance with the CESTAC method the tests have been
performed as follows : For different sizes N the stochastic
dot product p = a.b, i.e. the k components pi =

PN
j=1 aibi,j

are computed, each component bi being a k-tuple (bi,1, ..., bi,k)
of random gaussian values as explained above.

Then the empiric mean value p and the empiric variance
S2 of the result are computed :

p =
1

k

kX

i=1

pi, S2 =
1

k − 1

kX

i=1

(pi − p)2.

This provides samples of size k for the dot product p.
The mean value and standard deviation of these samples
respectively approximate the theoretical mean value µ and
the theoretical standard deviation τ of p.

Moreover as p is a linear combination of gaussian variables
it also follows a gaussian distribution. Hence√

N−1
S

(p − µ) follows a Student law with a k − 1 degree
of freedom and

k S2

τ2 follows a χ2 law with a k−1 degree of freedom. The
difficulty of the theory being on the algebraic operations on
variances it is this last property which is tested. Thus it is
checked whether or not the theoretical variance τ2 belongs
to the confidence interval

[
k S2

uα
;
k S2

vα
]

where uα and vα are the values of the χ2 distribution for a
probability α and a k−1 degree of freedom. Here the values
are taken for α = 0.95.

4.2 Sum ofN numbers
The vector a is defined as a = (1, 1, ..., 1). In this case the

dot product ab is equal to the sum of the stochastic compo-
nents of b and thus the theoretical mean value is µ1 = N ,
and the theoretical standard deviation is
τ1 = s

√
N = 0.001

√
N .

Table 1 reports the percentages of cases where the theo-
retical variance τ2

1 = s N is inside the computed confidence
interval. These percentages have been computed with 10000
runs.



N \ k 3 4 5 6 10 30
10 89.80 90.57 91.83 92.96 93.39 94.50
100 90.22 90.87 92.12 92.57 93.76 95.10
1000 88.99 91.16 92.22 92.67 93.37 93.70
10000 89.87 91.36 91.78 92.47 93.70 94.90

Table 1: Percentages of theoretical standard devia-
tion τ2

1 inside the confidence interval

4.3 Dot Product
We present the numerical results of two experiments.

Experiment 1. In this example a is a real vector with
(ai = i, i = 1, ..., N), and b is a stochastic vector. All
the samples have been generated with a gaussian generator
m = 1, s = 0.001.

The theoretical variance of the dot product ab is
τ2
2 = s2 N ∗ (N + 1) ∗ (2n + 1)/6. Table 2 shows the

percentages of theoretical variance τ2
2 inside the confidence

interval.

N \ k 3 4 5 6 10 30
10 89.51 90.85 92.43 92.16 93.04 94.70
100 90.15 90.88 92.46 92.89 93.05 94.30
1000 90.39 91.21 92.18 92.39 93.40 94.10
10000 89.77 90.85 91.29 92.82 93.41 93.50

Table 2: Percentages of theoretical standard devia-
tion σ2 insideside the confidence interval

Experiment 2. In this second example a is a real vector
with A(i) = 1/i, i = 1, ..., N and b is stochastic vector. All
the samples have been generated with a gaussian generator
m = 1, s = 0.001.

The theoretical variance is τ2
3 = s2 Pn

i=0 1/i2. Table 3
shows the percentages of theoretical variance τ2

3 inside the
confidence interval. Note: it is known that

P∞
i=0 1/i2 =

π2/6.

N \ k 3 4 5 6 10 30
10 90.68 92.39 93.13 93.52 94.64 94.50
100 89.83 91.06 91.76 92.81 93.68 96.00
1000 89.53 91.38 92.26 92.48 93.76 94.20
10000 89.82 91.26 91.93 92.71 93.72 94.50

Table 3: Percentages of theoretical variance τ2
3 inside

the confidence interval

Remark : These experiments on dot products show clearly
that the values for the variances predicted by our theory are
very close to the experimental ones. Anyhow one can see a
very small bias as the experiments show that the theoret-
ical values happen to be in the confidence interval with a
probability which is rather .93 or .94 than .95 as it should
be.

4.4 Solution of a linear systemA ∗ x = b

Let A = {aij} be a real matrix such that aij = i, if

i = j else aij = 10−|i−j|, i, j = 1, .., N . Assume that b is
a stochastic vector such that the component bi is generated
with a gaussian generator with a mean value bi =

Pn
j=1 aij

and a standard deviation equal to 1.e − 4. With such kind
of system, the solutions xi are around 1.

The theoretical standard deviation is obtained according
the method described in the previous section. We first com-
pute matrix D from the matrix A. We solve first y = D−1c,
then we compute x′′i = σ(yi)

p
|yi|. The values x′′i are pre-

sented in Table 4.

Compo- Theoretical standard Computed standard
nent deviations x′′ deviations

1 9.98e-05 10.4e-05
2 4.97e-05 4.06e-05
3 3.32e-05 3.21e-05
4 2.49e-05 2.02e-05
5 1.99e-05 1.81e-05
6 1.66e-05 1.50e-05
7 1.42e-05 1.54e-05
8 1.24e-05 1.02e-05
9 1.11e-05 0.778e-06
10 0.999e-05 0.806e-06

Table 4: Theoretical and computed standard devia-
tions

To obtain the experimental results, we take 10 different
vectors b(k), k = 1, .., 10, and solve the corresponding 10 sys-
tem A ∗ x = b(k). For each component of b(k), the standard
deviation of the n = 3 samples is computed. In the end, the
mean value of the standard deviations is computed for the
N = 10 components and presented in Table 4.

As we can see in Table 4, the theoretical standard devia-
tions and the computed values are very near.

5. CONCLUSION
In this work we briefly outline the algebraic theory of

stochastic numbers related to the operations addition and
multiplication by scalar and apply this theory for the solu-
tion of a linear algebraic problem.

The theoretic study of the properties of stochastic num-
bers allow us to obtain rigorous abstract definition of stochas-
tic numbers with respect to the operations addition and mul-
tiplication by scalars. Our theory also allows us to solve al-
gebraic problems with stochastic numbers. This gives us a
possibility to compare algebraically obtained results with
practical applications of stochastic numbers, such as the
ones provided by the CESTAC method [2]. Such compar-
isons will give additional information related to the stochas-
tic behaviour of random roundings in the course of numerical
computations.
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