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Abstract

In this work we study relevant
ringoid structures in stochastic
arithmetic involving multiplication.
The study of such structures are
needed in order to solve linear
problems involving stochastic num-
bers in the matrix and not only
in the right-hand side as it was
formerly studied. This continues
and extends a previous work where
it has been shown that computa-
tion with generalized stochastic
numbers as regard to addition and
multiplication by scalars can be
reduced to computation in familiar
vector spaces. This allowed us to
solve certain practical problems
with stochastic numbers and to
compare algebraically obtained
results with practical applications
of stochastic numbers. So this
theoretical works aims at extending
the results obtained with the vector
space structure to corresponding
operations in a ring-like structure.

Keywords: stochastic numbers,
stochastic arithmetic, standard devi-
ations, s-space, linear stochastic sys-
tem, s-ring, CESTAC method.

1 Introduction

Stochastic numbers are gaussian random vari-
ables with a known mean value and a known

standard deviation. Operations on stochastic
numbers are used here as a model for opera-
tions on imprecise numbers, i.e. real numbers
containing an unknown error which is sup-
posed to be centred gaussian with a known
standard deviation.

In practice, stochastic numbers are computed
using the CESTAC method, which is a Monte-
Carlo method consisting in performing each
arithmetic operation several times using an
arithmetic with a random rounding mode, see
[2], [7], [8]. Some fundamental properties of
stochastic numbers are considered in [3], [9].

This work is a part of a more general one, see
[1], [5], [6], which consists in studying the al-
gebraic structures induced by the operations
on stochastic numbers in the same way as it
has been done for intervals in order to pro-
vide a good algebraic understanding of the
performance of the CESTAC method which
has been up to now presented from a proba-
bilistic point of view.

The mean values of the stochastic numbers
satisfy the usual real arithmetic, whereas
standard deviations are added and multiplied
by scalars in a specific way. As regard to
addition the system of standard deviations
is an abelian monoid with cancellation law.
This monoid can be embedded in an additive
group and after a suitable extension of mul-
tiplication by scalars one obtains a so-called
s-space, which is closely related to a vector
space [1], [5]. This allows us to introduce in
s-spaces concepts like linear combination, ba-
sis, dimension etc. Thus, in theory, computa-
tions in s-spaces are reduced to computations



in vector spaces. This enables to find explicit
expressions for the solution of certain alge-
braic problems involving stochastic numbers.

In Sections 2 we briefly present the main re-
sults of the theory of s-spaces as regard to the
arithmetic operations for addition and multi-
plication by scalars needed for the purposes of
this study; for a detailed presentation of the
theory, see [5]. As an example we consider the
algebraic solution of linear systems of equa-
tions which right-hand sides involve stochas-
tic numbers. In Section 3 we study relevant
ringoid structures in stochastic arithmetic in-
volving multiplication.

2 Stochastic Arithmetic: Addition

and Multiplication by Scalars

By R we denote the set of reals; the lin-
early ordered field of reals is denoted RD =
(R,+, ·,≤). For any integer n ≥ 1 we denote
by R

n the set of all n-tuples (α1, α2, ..., αn),
where αi ∈ R. The set R

n forms a vector
space under the familiar operations of addi-
tion and multiplication by scalars denoted by
R

n = (Rn,+, RD, ·), n ≥ 1. By R
+ we denote

the set of nonnegative real numbers.

A stochastic number X = (m; s) is a gaus-
sian random variable with mean value m ∈ R

and (nonnegative) standard deviation s ∈ R
+.

The set of all stochastic numbers is S =
{(m; s) | m ∈ R, s ∈ R

+}.
The arithmetic for stochastic numbers.
Let X1 = (m1; s1), X2 = (m2; s2) ∈ S. Addi-
tion and multiplication by scalars are defined
by:

X1 + X2 = (m1; s1) + (m2; s2)
def
=

(

m1 + m2;
√

s2
1 + s2

2

)

,

γ ∗ X = γ ∗ (m; s)
def
=

(

γm; |γ|s
)

, γ ∈ RD.

A stochastic number of the form (0; s), s ∈
R

+, is called symmetric or centred. If X1, X2

are symmetric stochastic numbers, then X1 +
X2 and λ ∗ X1, λ ∈ RD, are also symmet-
ric stochastic numbers. Thus there is a 1–1

correspondence between the set of symmetric
stochastic numbers and the set R

+. We shall
use special symbols “⊕”, “∗” for the arith-
metic operations over standard deviations, as
these operations are different from the corre-
sponding ones for numbers. The operations
“⊕”, “∗” induce a special arithmetic on the
set R

+. Consider the system (R+,⊕, RD, ∗),
where:

α ⊕ β =
√

α2 + β2, α, β ∈ R
+, (1)

γ ∗ δ = |γ|δ, γ ∈ RD, δ ∈ R
+. (2)

Proposition 1. [5] The system
(R+,⊕, RD, ∗) is an abelian additive monoid
with cancellation, such that for s, t ∈ R

+,
α, β ∈ RD:

α ∗ (s ⊕ t) = α ∗ s ⊕ α ∗ t, (3)

α ∗ (β ∗ s) = (αβ) ∗ s, (4)

1 ∗ s = s, (5)

(−1) ∗ s = s, (6)
√

α2 + β2 ∗ s = α ∗ s ⊕ β ∗ s, α, β ≥ 0. (7)

A system satisfying the conditions of Proposi-
tion 1 is called an s-space of monoid structure.

2.1 The Group System of Standard
Deviations

For α ∈ R denote σ(α) = {+, if α ≥
0; −, if α < 0}. We extend the opera-
tion addition “⊕” for all α, β ∈ R, admitting
thus negative reals, corresponding to improper
standard deviations:

α ⊕ β
def
= σ(α + β)

√

|σ(α)α2 + σ(β)β2|. (8)

Note that σ(α + β) = σ(σ(α)α2 + σ(β)β2) =
σ(α ⊕ β) for α, β ∈ R.

Using (8) we embed isomorphically the
monoid (R+,⊕) into the system (R,⊕), which
is an abelian group with null 0 and opposite
element opp(α) = −α, i. e. α ⊕ (−α) =
0. Indeed, (8) implies α ⊕ (−α) = σ(α −
α)

√

|σ(α)α2 − σ(α)α2| = σ(0)
√

0 = 0. Here
are some examples of addition in the system
(R,⊕): 1 ⊕ 1 =

√
2, 1 ⊕ 2 =

√
5, 3 ⊕ 4 = 5,

4⊕(−3) =
√

7, 3⊕(−4) = −
√

7, 5⊕(−4) = 3,



4⊕ (−5) = −3, (−3)⊕ (−4) = −5, 1⊕2⊕3 =√
14, 1 ⊕ 2 ⊕ (−3) = −2.

Using (8) we obtain for n ≥ 2

α1 ⊕ ... ⊕ αn =

σ(α1 ⊕ ... ⊕ αn)
√

|σ(α1)α2
1 + ... + σ(αn)α2

n|.

Proposition 2. The equation α1 ⊕α2 ⊕ ...⊕
αn = β is equivalent to σ(α1)α

2
1 + ... +

σ(αn)α2
n = σ(β)β2.

Multiplication by scalars is naturally ex-
tended on the set R of generalized standard
deviations by: γ ∗ s = |γ|s, s ∈ R. Multiplica-
tion by −1 (negation) is (−1)∗s = |−1|s = s,
s ∈ R. To avoid confusion we shall write the
scalars always to the left side of the standard
deviation. Under this convention we have, e.
g. (−2) ∗ 2 = 4, whereas 2 ∗ (−2) = −4. Note
that if s is a standard deviation, then we have
γ ∗ s = (−γ) ∗ s for any scalar γ ∈ RD.

It is easy to check that relations (3)–(7) hold
true for generalized standard deviations. This
justifies the following definition:

Definition 1. A system (S,⊕, RD, ∗), such
that:

i) (S,⊕) is an abelian additive group, and

ii) for any s, t ∈ S and α, β ∈ RD relations
(3)–(7) hold,

is called an s-space over RD (of group struc-
ture).

The canonical s-space. For any integer k ≥
1 the set S = R

k of all k-tuples (α1, α2, ..., αk)
forms an s-space over RD under the following
operations

(α1, ..., αk) ⊕ (β1, ..., βk) =
(α1 ⊕ β1, ..., αk ⊕ βk),

γ ∗ (α1, α2, ..., αk) = (|γ|α1, ..., |γ|αk),

where αi ⊕ βi for αi, βi ∈ R is given by (8)
and γ ∈ RD. The s-space S

k = (Rk,⊕, R, ∗)
is called the canonical s-space (of standard de-
viations). We identify the elements of S

k with
the generalized symmetric stochastic num-
bers.

2.2 S-spaces and Vector Spaces

Proposition 3. Let (S,+, RD, ∗) be an s-
space over RD. Then (S,+, RD, ·) is a vector
space over RD, iff the operation “·”: RD ×
S −→ S is defined by

α · c =

{
√

|α| ∗ c, if α ≥ 0;
√

|α| ∗ (−c), if α < 0.

Proposition 4. Let (S,+, RD, ·) be a vec-
tor space over RD. The system (S,+, RD, ∗),
where “∗” is defined by α ∗ c = α2 · c is an
s-space over RD.

Thus each of the two spaces (S,+, RD, ∗) and
(S,+, RD, ·) can be obtained from the other
by a redefinition of the operation multipli-
cation by scalars using Proposition 3, resp.
Proposition 4.

Assume that S = (S,+, RD, ∗) is an s-
space over RD and (S,+, RD, ·) is the asso-
ciated vector space. From the vector space
(S,+, RD, ·) we can transfer vector space
concepts, such as linear combination, lin-
ear dependence, basis etc., to the s-space
(S,+, RD, ∗) [5]. Thus, it can be proved that
any s-space over RD, with a basis of k ele-
ments, is isomorphic to S

k.

Generalized stochastic numbers can be de-
fined as elements of the direct sum R

k ⊕ S
k

of a vector space R
k (of mean values) and a

s-space S
k (of standard deviations) both of

same dimension k. Such a setting allows us to
consider numerical problems involving vectors
and matrices, wherein the numeric variables
have been substituted by stochastic ones. In
the next subsection we consider such a prob-
lem.

2.3 Linear Systems with Stochastic
Right-hand Side

We consider a linear system Ax = b, such
that A is a real n × n-matrix and the right-
hand side b is a vector of stochastic numbers.
Then the solution x also consists of stochas-
tic numbers, and, respectively, all arithmetic
operations (additions and multiplications by
scalars) in the expression Ax involve stochas-



tic numbers; therefore we shall write A ∗ x
instead of Ax.

Problem. Assume that A = (αij)
n
i,j=1, αij ∈

R, is a real n × n-matrix, and b = (b′; b′′)
is a n-tuple of (generalized) stochastic num-
bers, such that b′, b′′ ∈ R

n, b′ = (b′1, ..., b
′
n),

b′′ = (b′′1 , ..., b
′′
n). We look for a (generalized)

stochastic vector x = (x′;x′′), x′, x′′ ∈ R
n,

that is an n-tuple of stochastic numbers, such
that A ∗ x = b.

Solution. The i-th equation of the system
A ∗ x = b reads αi1 ∗ x1 ⊕ ... ⊕ αin ∗ xn = bi.
Obviously, A ∗ x = b reduces to a linear sys-
tem Ax′ = b′ for the vector x′ = (x′

1, ..., x
′
n)

of mean values and a system A ∗ x′′ = b′′ for
the standard deviations x′′ = (x′′

1 , ..., x
′′
n). If

A = (αij) is nonsingular, then the solution for
the mean-values is straightforward and can be
obtained by any method for solving a real lin-
ear system. We shall next concentrate on the
solution of the system A∗x′′ = b′′ for the stan-
dard deviations which is the one that makes
problem because of the corresponding pecu-
liar addition and multiplication by scalars.

The i-th equation of the system A ∗ x′′ = b′′

reads αi1 ∗ x′′
1 ⊕ ...⊕αin ∗ x′′

n = b′′i . According
to Proposition 2, this is equivalent to

α2
i1σ(x′′

1)x
′′2
1 + ... + α2

inσ(x′′
n)x′′2

n = σ(b′′i )b
′′2
i ,

minding that σ(αij ∗ x′′

j ) = σ(x′′

j ).

Setting σ(x′′
i )(x

′′
i )

2 = yi, σ(b′′i )(b
′′
i )

2 = ci, we
obtain a linear n × n system Dy = c for
y = (yi), where D = (α2

ij), c = (ci). If D is
nonsingular we can solve the system Dy = c
for the vector y, y = D−1c, and then obtain
the standard deviation vector x′′ by means of
x′′

i = σ(yi)
√

|yi|. Thus for the solution of the
original problem it is necessary and sufficient
that both matrices A = (αij) and D = (α2

ij)
are nonsingular.

3 Stochastic Arithmetic:

Multiplication and Inclusion

In the previous section we discussed the
algebraic properties of stochastic numbers
(or vectors) related to the operations addi-
tion and multiplication by scalars. Now we

turn our attention to one more operation—
multiplication—and the inclusion relation.
The aim is here to develop a theory extending
the previous one and in which, full linear sys-
tems in which both left hand side and right
hand side contain stochastic numbers. Thus
the multiplication of two stochastic numbers
must be defined and some structures close to
rings and then to fields must be constructed.
In this work consider the one-dimensional case
is only considered.

Two stochastic numbers X1 = (m1; s1), X2 =
(m2; s2), s1, s2 ≥ 0, are multiplied according
to:

X1 ∗ X2
def
=

(

m1m2;
√

m2
1s

2
2 + m2

2s
2
1 + s2

2s
2
1

)

.
(9)

The inclusion relation “⊆” between two
stochastic numbers is defined by

X1 ⊆ X2 ⇐⇒| m2 − m1 |≤ s2 − s1. (10)

We now proceed as in the previous section: we
extend (9), (10) for generalized (proper and
improper) stochastic numbers starting from
the set S of symmetric generalized stochastic
numbers. In our construction we shall require
that multiplication is inclusion isotone, that
is: X1 ⊆ X2 implies X1 ∗ Y ⊆ X2 ∗ Y for
any stochastic numbers X1, X2, Y . Note that
the latter property is satisfied for addition,
that is: X1 ⊆ X2 implies X1 + Y ⊆ X2 + Y .
We define multiplication in S following ideas
from [4]. Consider the following operation for
(0; a′′), (0; b′′) ∈ S:

(0; a′′) ∗ (0; b′′) = (0; a′′ ∗ b′′), (11)

where a′′ ∗ b′′ is given by:

a ∗ b =















ab, if a ≥ 0, b ≥ 0,
−ab, if a ≤ 0, b < 0,
0, if a > 0, b < 0

or a < 0, b > 0.

(12)

For example: (0; 2) ∗ (0; 3) = (0; 6), (0;−2) ∗
(0;−3) = (0;−6), (0;−2) ∗ (0; 3) = (0; 0). In-
clusion is extended in S by means of (0; a′′) ⊆
(0; b′′) ⇐⇒ a′′ ≤ b′′ after dropping the re-
striction a′′ ≥ 0, b′′ ≥ 0. For example:



(0;−3) ⊆ (0;−1) ⊆ (0; 0) ⊆ (0; 1). This or-
der corresponds to the natural order in the
set of reals. Is is easy to see that the inclu-
sion isotonicity property for multiplication is
satisfied.

Using this idea it is natural to define multi-
plication in the set of generalized stochastic
numbers by means of

a ∗ b =































(a′b′; |a′|b′′ + |b′|a′′ + ã′′b̃′′),
if κ(a) ≤ 1, κ(b) ≤ 1;

(b′ + σ(b′)σ(a′′)b′′) ∗ (a′; a′′),
if κ(a) > 1 ≥ κ(b) or

κ(a) ≥ κ(b) > 1, a′′b′′ ≥ 0;
0, if κ(a) ≥ 1, κ(b) ≥ 1, a′′b′′ ≤ 0,

wherein the functional κ is given for a =
(a′; a′′)) by: κ(a) = |a′′|/|a′|, a′ 6= 0.

We note that multiplication by scalars, as de-
fined in the previous section, is compatible
with the above operation for multiplication,
which allows us to use same notation for both
operations.

In what follows we discuss the system (R ⊕
S,+, ∗,⊆) in axiomatic manner starting from
the concept of s-ring.

3.1 Axiomatic definition of s-ring

Definition 2. An s-ring is a system
(S,⊕, ∗,⊆), such that:

A1. (S,⊆) is an ordered set (a poset);

A2. (S,⊕,⊆) is an isotone abelian group;

A3. Multiplication in (S, ∗,⊆) is isotone;

A4. Multiplication “∗” in (S,⊕, ∗,⊆) is dis-
tributive over a sum of any two elements
that are ⊇ 0.

If, in addition, the multiplication “∗” is com-
mutative, we shall call the s-ring commuta-
tive.

Recall that the ordered field of reals RD =
(R,+, ·,≤) is a (linearly) ordered ring. In-
deed, RD satisfies assumptions A1 and A2.
Concerning assumption A3, (R, ·,≤) is a com-
mutative semigroup, which is not isotone,

that is a ≤ b =⇒ ac ≤ bc does not generally
hold (for all a, b, c). As regard to assumption
A4, the ring (R,+, ·) is distributive over the
sum of any two elements, whereas (S,⊕, ∗) is
not.

For more clarity let us formulate the assump-
tions of a s-ring in detail using symbolic no-
tation. The null in the additive group (S,⊕)
is denoted as usually by 0; the opposite ele-
ment to a ∈ S is denoted opp(a). Using these
notation, according to Definition 2, a system
(S,⊕, ∗,⊆) is a s-ring if the following 10 ax-
ioms hold true:

A1. (S,⊆) is ordered, i. e. for all a, b, c ∈ S:

A1.1. a ⊆ a,

A1.2. a ⊆ b, b ⊆ a =⇒ a = b,

A1.3. a ⊆ b, b ⊆ c =⇒ a ⊆ c;

A2. (S,⊕,⊆) is an isotone abelian group with
null 0 and opposite opp(a), i. e. for all
a, b, c ∈ S:

A2.1. (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c),

A2.2. a ⊕ b = b ⊕ a,

A2.3. a ⊕ 0 = a,

A2.4. a ⊕ opp(a) = 0,

A2.5. a ⊆ b =⇒ a ⊕ c ⊆ b ⊕ c;

A3. Multiplication in (S, ∗,⊆) is isotone, i. e.
a ⊆ b =⇒ a ∗ c ⊆ b ∗ c for all a, b, c ∈ S;

A4. For all a, b, c ∈ S such that 0 ⊆ a, b,
(S,⊕, ∗,⊆) satisfies (a⊕b)∗c = a∗c⊕b∗c.

Now several definitions follow analogous to
corresponding definitions related to familiar
rings.

Definition 3. An s-ring S is an s-ring with
identity if there is an element e in S such that
a ∗ e = e ∗ a = a for all a ∈ S.

If there is an identity, it is clearly unique, and
will be denoted, as usually, by 1. Further, as
with familiar rings, if the s-ring is not the null
one (that is consists only of the null element
0), then 1 6= 0.



Definition 4. Let S be a s-ring. If a 6= 0, b 6=
0 are elements of S such that a∗b = 0, then a
is called left zero divisor and b is called right
zero divisor.

A s-ring is linearly ordered if for any a, b either
a ⊆ b or b ⊆ a holds true. In a linearly or-
dered s-ring denote by S+ = {a ∈ S | a ⊇ 0},
S− = S\S+, the sets of proper, resp. improper
elements of S; the set S+ \ {0} comprises the
strictly proper elements of S.

We introduce a function τ : S −→ Λ = {+,−}
(type, direction, orientation of an element of
S) by

τ(a) =

{

+, if a ∈ S+,
−, if a ∈ S−.

(13)

Clearly τ(a) = τ(b), if a, b ∈ S+ or a, b ∈
S−”. (The function τ is similar to the function
σ, but τ is defined in an s-ring whereas σ is
defined in a ring—the field of reals.)

Theorem 1. (Quasidistributive law in an s-
ring) For any a, b, c from an s-ring we have:

(a ⊕ b) ∗ cτ(a⊕b) = a ∗ cτ(a) ⊕ b ∗ cτ(b). (14)

3.2 Relation between a linear ordered
(l.o.) ring and a s-ring

Formula (12) defines multiplication “∗” in a l.
o. ring by the familiar linear multiplication.
Similarly, we can define linear multiplication
in a l. o. s-ring

a · b = aτ(b) ∗ bτ(a), (15)

where τ is defined by (13).

Theorem 2. Every l. o. ring (l. o. field)
generates via (12) a unique (up to isomor-
phism) s-ring and vice versa, every s-ring in-
duces via (15) a unique ring.

Theorem 2 shows that results from a field can
be re-formulated as results in the induced s-
rings by means of (15) and vice versa, results
from an s-ring can be reformulated as results
in the induced field by means of (12).

Definition 5. An s-algebra is a l. o. s-ring,
which is an l. o. quasivector space over the l.
o. real field RD, and multiplications in both
spaces are compatible.

3.3 Spaces of Stochastic Numbers

Theorem 3. The system S =
(R,+, ∗, RD, ∗′,⊆) with multiplication “∗′”
defined by (12) and multiplication by scalars
γ ∗ a = |γ|a, is an s-algebra.

This is the reason to use same notation “∗” for
the two multiplications. To avoid confusion,
we place the scalar always to the left of the
stochastic number.

Consider the direct sum RD ⊕ S. The ele-
ment a = (a′; a′′) ∈ RD ⊕ S is a (generalized)
stochastic number. Clearly, (a′; 0) ∈ RD and
(0; a′′) ∈ S. Addition of stochastic numbers
is:

a⊕b = (a′+b′; a′′⊕b′′) = (a′+b′;
√

a′′2 ⊕ b′′2).

The opposite (inverse additive) of a = (a′, a′′)
is:

opp(a′; a′′) = ¬(a′; a′′)− = (−a′; a′′−) =
(−a′;−a′′).

In RD ⊕ S we have multiplication by scalars
γ ∈ RD:

γ ∗ (a′; a′′) = (γ ∗ a′; γ ∗ a′′)
= (γ · a′; γ ∗ a′′) = (γa′; |γ|a′′).

Note that (−1) ∗ (a′; a′′) = ¬(a′; a′′) =
(−a′; a′′) 6= opp(a′; a′′).

Theorem 4. The system (RD ⊕ S,+, RD, ∗)
is a quasivector space.

We have (−1) ∗ (b′; b′′) = (−b′; b′′). We shall
further denote (−1) ∗ a by ¬a and call the
operation ¬a negation ¬ (a′; a′′) = (−a′; a′′).

We denote the composition of “opp” and
“neg” in RD⊕S as conjugation (dual), symbol-
ically a− = opp(¬a) = ¬(opp(a)). Note that
in S negation is identity, ¬(0; a′′) = (0; a′′),
and we have a− = opp(a) for a ∈ S, that is
(0; a′′)− = opp(0; a′′) = (0;−a′′−) = (0;−a′′).

On the other side, in RD we have (a′; 0)− =
(a′; 0), so that conjugation and identity co-
incide in RD. In general we have: a− =
(a′; a′′)− = (−1) ∗ opp(a) = (a′; a′′−) =
(a′;−a′′).



We define multiplication in RD ⊕ S by:

(a′; a′′) ∗ (b′; b′′)
= (a′ · b′; a′ ∗ b′′ + b′ ∗ a′′ + a′′ ∗ b′′)
= (a′b′; |a′|b′′ + |b′|a′′ + a′′ ∗ b′′),

using the same notation “∗” as in S. From
the special cases:

(a′; 0) ∗ (b′; 0) = (a′b′; 0),

(0; a′′) ∗ (0; b′′) = (0; a′′ ∗ b′′),

we conclude that (3.3) extends the multipli-
cations from RD and S into the direct sum
RD ⊕ S. We also have

(a′; 0) ∗ (b′; b′′) = (a′b′; a′ ∗ b′′) = (a′b′; |a′|b′′),

showing that a multiplier of the form (a′; 0)
acts like a scalar in multiplication by scalars.
Hence elements of the form (a′; 0) can be iden-
tified with scalars a′ ∈ RD. In particular, we
have (−1; 0) ∗ (b′; b′′) = (−b′; b′′).

Commutativity. It is immediately seen that
multiplication in RD ⊕ S is commutative.

Identity. It is immediately seen that (1; 0) is
an identity of (RD ⊕ S, ∗): (a′; a′′) ∗ (1; 0) =
(a′; a′′).

Reciprocal. The solution x of the equa-
tion a ∗ x = 1 for a′ 6= 0 is x = a−1 =
(1/a′;−a′′/|a′|2). We say that a−1 is the re-
ciprocal of a.

It is also shown easily that the multiplica-
tion by scalars and inner multiplication in
RD ⊕ S are compatible. In addition, a quasi-
distributive relation of the form (14) can be
proved. Inclusion is defined in RD ⊕ S by
means of (10). Inclusion monotonicity of mul-
tiplication in RD ⊕ S holds as well. Due to
the presence of unity division is introduced in
RD ⊕ S.

Proposition 5. The system (RD⊕S,⊕, ∗,⊆)
is a s-ring.

4 Conclusion

The theoretic study of the properties of
stochastic numbers allow us to obtain rigor-
ous abstract definition of stochastic numbers

with respect to the operations addition, inner
multiplication and multiplication by scalars.
This allows us to solve certain algebraic prob-
lems with stochastic numbers. This gives us a
possibility to compare algebraically obtained
results with practical applications of stochas-
tic numbers, such as the ones provided by
the CESTAC method [2]. Such comparisons
will give additional information related to the
stochastic behaviour of random roundings in
the course of numerical computations. In this
work we study relevant ringoid structures in
stochastic arithmetic involving (inner) multi-
plication. It is hoped that the study of such
structures will allow us to solve linear prob-
lems involving stochastic numbers in the ma-
trix (not only in the right-hand sides).
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Anwendungs- möglichkeiten der erweit-
erten Intervallrechnung und des hyper-
bolischen Fastkörpers über R. Comput-
ing Suppl. 1, 81–94 (1977).

[5] Markov, S., R. Alt, Stochastic arith-
metic: Addition and Multiplication by
Scalars, Appl. Numer. Math. 50 (2004),
475–488.



[6] Markov, S., R. Alt, J.-L. Lamotte,
Stochastic Arithmetic: S-spaces and
Some Applications, Num. Algorithms 37
(1–4), 275–284, 2004.

[7] Vignes, J., R. Alt, An Efficient Stochas-
tic Method for Round-Off Error Anal-
ysis, in: Accurate Scientific Computa-
tions, LNCS 235, Springer, 1985, 183–
205.

[8] Vignes, J., Review on Stochastic Ap-
proach to Round-Off Error Analysis and
its Applications. Math. and Comp. in
Sim. 30, 6 (1988), 481–491.

[9] Vignes, J., A Stochastic Arithmetic for
Reliable Scientific Computation, Math.
and Comp. in Sim. 35 (1993), 233–261.


