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Abstract

We discuss the solution to the interval algebraic system A xx = b involving interval
n X n matrix A and interval vector b in directed interval arithmetic involving improper
intervals. We give some new relations for directed intervals, which form the basis for
a directed interval matrix algebra. Using such relations we prove convergence of an
iterative method, formulated by L. Kupriyanova, under simple explicit conditions on
the interval matrix A. We propose an iterative numerical algorithm for the solution
to a class of interval algebraic systems A X x = b. Cramer-type formula for a special
case of real matrices and interval right-hand side are used for the computation of an
initial approximation for the iteration method. A Mathematica function performing
the proposed algorithm is described.

1 Introduction

A linear algebraic system Az = b involving intervals in the n X n-matrix A and/or in the
right-hand side n-vector b, relates to four different problems, resp. solution sets [14]-[16],
[20]:
i) the united solution set is the set of solutions of all real (degenerate, thin) systems Az = b
with A € A and b € b, 1. e.,

Y33(A,b) = {z € R"|(FA€ A)(Fbe b)(Ax =b)} (1)

= {zeR"|AznNb#0};

ii) the tolerable solution set is the set of all real vectors = such that for every real A € A the
real vector Ax is contained in the interval vector b, that is

Sys(A,b) = {zeR"|(VAe A)3beb)(Az=0)} 2)
= {zeR'|(VA€cA)(Az eb)}={z € R"| Az Cb};
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iii) the controlled solution set is the set of all real vectors z € R", such that for any b € b
we can find the corresponding A € A satisfying Az = b (see [14]);

Yav(A,b) = {z€R"|(FA€A)VbeDb)(Az =1b)} (3)
= {2z R"|(VbeDb)(Az3b)={xr € R"| Az DO b};

iv) the interval algebraic solution is an interval vector x which substituted in the expression
A x x, using interval arithmetic, results in b, that is

A xx=b. (4)

When talking about interval algebraic solution we have to specify the interval arithmetic
used. The interval algebraic solutions do not exist in general in the ordinary interval space
[13]. An appropriate interval arithmetic for solving algebraic equations is the generalized in-
terval arithmetic involving improper intervals. We shall call this arithmetic directed interval
arithmetic, since the support set of this arithmetic is the set of both proper and improper
intervals, which we call directed intervals [9]-[10]. Directed interval arithmetic is the natural
arithmetic for the solution of algebraic equations, since it is obtained from the arithmetic for
normal intervals via algebraic completion. Solving interval algebraic equations in ordinary
interval arithmetic can be compared to solving real linear algebraic (systems of) equations
using only positive real numbers.

It has been noticed by S. Shary and by some other authors [3], [6], [14]-[16], [20] that
the (directed) interval algebraic solution (4) is closely related to (some of) the solutions of
problems i)-iii). Also, several convenient formulas for symbolic manipulation with directed
intervals have been found [2], [8]-[10]. On the other side S. Shary [15], A. Zakharov [18]-
[20], V. Zyuzin [21], [22] and L. Kupriyanova [6] formulated some computational tools for
the solution to (4). Based on these investigations, the purpose of this work is:

i) to present several new useful rules for algebraic manipulations in directed interval
(matrix) arithmetic;

i1) using these rules to give a new proof for convergence of an iteration method, proposed
by L. Kupriyanova, under explicit conditions on the input data A;

iii) to formulate Cramer-type formulas for the solution of problem (4) for a special case
of real matrix;

iv) using the obtained results to formulate a numerical algorithm and implement it in
the computer algebra system Mathematica.

2 Directed interval arithmetic

Directed interval arithmetic [3]-[5], [8]-[10] presents an algebraic completion of the inter-
val arithmetic for compact intervals on the real line, providing thus a convenient tool for
solving interval algebraic equations. We give below some basic concepts of directed interval
arithmetic.

Denote by D = {[a,b] | a,b € R} the set of ordered couples of real numbers. We call the
elements of D directed (or generalized) intervals and the real numbers a,b are called their
components. Directed intervals will be denoted by boldface letters. The first component of



a € D is further denoted by a~, and the second by a*, so that a = [, a*]. Thus ¢* € R
with A € A = {4+, —1} is the first or second component of a € D depending on the value of
A. In what follows the binary variable A will be sometimes expressed as a "product” of two

binary variables, A = pv, p,v € A, assuming that ++ = —— = +, +— = —+ = —. The
directed interval a = [a7,a*] is called proper (normal, ordinary), if a= < a™, degenerated
if a= = a* (in this case we write a = a = [a,a]), and improper if a= > a*. The set of

all proper intervals is denoted by I(R), the set of degenerated intervals is equivalent to R
and is denoted again by R, and the set of improper intervals is denoted by I(R). We have
D =I(R)UI(R).

The directed interval a = [a~, a*] € D defines a binary variable "direction” by 7(a) = {+,

if a= < a*;—, if a= > at}. To every directed interval a = [a7,a™] € D we assign the

proper interval @ = pro(a) = {[a",a"], if 7(a) = +; [aT,a”], if 7(a) = —}; we have
pro(a) = [a~7®), a™®)]. Following S. Shary we shall call the proper interval pro(a) = a the
proper projection of a. Obviously, a=7®) < ¢7(@),

Let Z={acI(R)|a~ <0<at},Z*={acI(R)|a <0<a}, Z={acI(R)|
at<0<a}, 7 ={acl(R)|at <0<a },T=ZUZ,T*"=2*UZ.InD*=D\T*
we define the functional 7sign” of a directed interval o : D* — A, for a € D*\ {0} by
o(a) = {+, ifa” >0and a™ > 0; —, ifa= < 0 and a* < 0}, and for zero argument by
o([0,0]) = o(0) = +. In particular, o is well defined over R. The sign o is not defined for
intervals from 7*. Obviously, o(a) = o(p(pro(a)) = o(a).

The operations +, x are defined in D by:

at+b = [a+b,a"+bT], a,be D, (5)
4o ®h=o@) O] abe D)

axb = { [a®b=%, a®b®], 6§ =a(a), a€ D*, beT™, (6)
[a=%b°, a®b’], § =o(b), a€T*, be D,

[max{a~b~,atb*}, min{a~b*,atb"}], a,be 7, (7)

[min{a~b%,a*b™}, max{a~b",aTb"}], a,be 7%,
axb=
0, (a€Z,becZ)V (acZ,beZ.

Formulae (6), (7), presenting component-wise the product in D are equivalent to the defini-
tions given in [4], [5]. Recall that the arithmetic operations for normal intervals [a, 8], [¢, d] €
I(R) are defined by [a,b] x [¢,d] = {zxy | a <z < be <y < d}, € {+,—,x,/} [1]
The restrictions of the expressions (5), (6)—(7) in /(R) produce the familiar addition, resp.
multiplication, for normal intervals.

We shall omit the symbol x if one of the multipliers in a product a x b is degenerate.
From (6) for a = [a,a] = a € R, b € D we have a x b = ab = [ab=7("), ab"()]. The operator
negation (negative element) is defined by —b = (—1)b = [—b%, —b7]. The restriction of the
composite operation a + (—1)b = a + (=b) = [a= — b*,a™ — b7], for a,b € I(R) is the
familiar subtraction of intervals.

The algebraic systems (D,+) and (D \ 7, x) are groups [4], [5]. Denote by —,a the
inverse element of a € D with respect to addition, called opposite element, and by 1/,a the
inverse element of a € D\ 7 with respect to 7 x”.
component-wise presentations —,a = [—a~, —a%t], for a€ D, and 1/pa=[1/a",1/a"],

for ae D\T.

For the inverse elements we have the



The group properties of (D,+), (D \ 7, x) allow solving of algebraic equations. For
a,b € D the unique solution to the equation a + x = b is x = b 4+ (—ja). Similarly, for
ac€ D\ 7,bc D the unique solution to the equation a x y = b isy = b x (1/,a).

In addition to the operators negation —a = [—a™, —a~| and opposite element —,a =
[—a~, —a™] we define the operator dual element by @ = [a—,at] = [aT,a”]. The negative,
the opposite and the dual elements are related in the following way:

A= —4(~a) = —(~a). (®)

The operator inversion defined in D \ 7 by analogy to the operator —a in (8) as 1/a =
I/ra=1/a=[1/a",1/a"], satisfies

1/x(1/a) =1/(1/ra) =& (9)
The operation division a x (1/b) for a € D, b € D\ 7, is denoted by a/b. From (8) and

(9) we obtain for the inverse operators w. r. t. addition and multiplication —,a = —a,
resp., 1/pa = 1/a. Using these presentations, we can present the unique solutions of the
equations a+x = b, axy = b,a+c¢cxz = Db in the foorm x = b + (-a) = b — 7,
resp. y = b x (—a) = b/a, z = (b —a@)/c. The inverse elements —,a, 1/,a generate the
operations a—,b =a+(—;b) =a+(-b)=a—-b, a/sb=ax(1/,b) =ax(1/b) = a/b.

To summarize, the algebra KX = (D, +, X) involves the operations subtraction a — b,
division a/b, the operator dual element @, and the operations a — b, a/b, @ — b, a/b.
Similarly, we can compose a+ b, a x b, a+ b, @ x b etc.

In addition to the notation @, for the operator dual element we shall also use the notation
a_ = a. For the sake of uniformity we shall write a; = a. Using the functional notation a,
with A = {4, —}, we can formulate a simple distributive-like relation in D*, which is more
convenient than the one formulated in table form by E. Kaucher [5].

Proposition 2.1 (Conditionally Distributive Law) For a,b,c,a+ b € D* we have
(a + b) X Co(ath) = (a X Cg(a)) + (b X Cg(b)). (10)
Relation (10) can be written in the following equivalent forms [2], [8]

(a+b)xc = (axcya)oatr) T (b X Copyo(ats))
(axec)+(bxc), ofa

)+ )
= (axc)+(bxtc), ola)=—o(b), o
(ax€)+(bxc), ola)=—o(b

Note that, o(a) = o(a) = o(pro(a)). Moreover, we have o(a+ b) = o(a + b).
Corrolary 2.1 In the special case when ¢ is degenerate, ¢ = ¢ € R, (10) becomes
c(a+b) = ca+ cb. (11)

In the special case when in (10) the intervals a and b are degenerate, a=a € R, b=05b€ R,
we have

(@ +b)€s(aty) = aCo(a) + bCspr). (12)



From the conditionally-distributive law we see that if o(a) = o(b), we have (ax ¢)+ (b x
c) = (a+b) xc, that is we can extract the (common) multiplier ¢ out of brackets in this case.
In the case o(a) = —o(b) we cannot extract ¢ out of the brackets. Denote by v: D — R
the functional defined by v(a) =a+4+a=a" 4+ a*. We have v(ax b)=(axb)+ (axb)=
(axb)+(axb). In particular, for a € R, b € D, v(ab) = ab+ab = a(b+b) = av(b) € R.

Proposition 2.2 For a,b,c,a+b,a+ (—b) € D* we have
i) if o(a) = o(b) then

(axe)+(bxc)=(a+b)xc; (13)

i) if o(a) = —o(b) then (ax c)+ (b x ¢) is equivalent to one of the following expressions
(a+(=b)) xc+wv(bxc), (a+(=b))xc+rv(c)b;

((ma)+b)xec+v(axec), ((—a)+b)xc+r(c)a. (14)

We shall also need to be able to extract ¢ or € out of brackets in expressions of the form
(a x ¢) 4 (b x €). The following proposition holds true

Proposition 2.3 For a,b,c,a+ b,a+ (—b) € D* we have
i) if o(a) = —o(b) then

(axe)+(bxg) = { Ea)’_ (15)
i) if o(a) = o(b) = o* then

[ (at(=b))xctubxc), olat(—b))=o"
(axc)—l_(bXC)_{(—a)—l—b)xc—l—y(axc), o(at (—b)) = —o™.

The special case a,b € R in Propositions 2.2 and 2.3 can be summarized in the following
corrolary

Corrolary 2.2 Fora,b€e R, c € D* we have

o [ late o(a) = o(6),
ac +b { (b—a)e + av(c), o(a) = —o(b):

(a4 e, o(a) = —o(b) = ola+b),
e _ et o(0) = ~o) = ~ofa 1)

Remark. The expression (b—a)c+av(c) to be met twice in the right hand sides of the above
equalities can be replaced by the expression (a — b)c 4 br(c).

Operations between matrices of directed intervals are defined similarly to matrix op-
erations involving normal intervals. Sum (difference) of two interval matrices of identical
size is an interval matrix of the same size formed by component-wise sums (differences). If

5



A = (a;;) € D™*! and B = (b;;) € D'", then the product of the directed interval matrices
A and B is the matrix C = (¢;;) € R™*" with ¢;; = 22:1 a;;by;. This defines, in particular,
problem (4) where the expression A X x is a product of two interval matrices: namely, A, x
are directed interval matrices of order n x n, n x 1 resp. and the result y = A xxisan x 1
directed interval matrix.

Although D is not a linear space it can be normed in the usual way [5]. As a norm we
may take || x ||= max{| 27 |,| 7 |}. The norm is defined for vectors and matrices in the
usual way. For instance, for A = (a;) € D™, || A ||= max;{>5_; || aix ||}. For the
product of two interval matrices we have || A x B ||<|| A |||| B ||. A metricin D" is defined
by || x —ry ||=]| x =¥ || for x,y € D". The following proposition holds true

Proposition 2.4 Fora,b,c € D", ||(cxa)—p(cxb)| <|c||la—rb].

In the sequel we shall make use of the following fixed-point theorem, which is a general-
ization of the fixed-point theorem given in [7]

Proposition 2.5 Let U : Dy — Dy, Dy C D", be a conlraction mapping in the sense that
there exists ¢ € R, 0 < ¢ < 1, such that || U(x) =, U(y) ||[< ¢ || x=rY ||, for every x,y € D;.
Then U possesses a fized-point x* € Dy which is the limit of the sequence x(+1) = U(x"),
[=0,1,..., with any x© € Dy.

The proof follows the classical proof using properties of “—;” such as (a—,b)+(b—jc) =
a —y C.

3 Applications to systems of interval algebraic equa-
tions

(d;;) with d;; = a;;, d;; = 0,7 # 5. For D = D(A) denote

For Ae D™*™ we denote D( )=
=0,i # j. Clearly D=! x D = 1. In [6] the following iteration

D_l = (d;})7 d;} = 1/a_iia
method has been proposed

i

X; = (bi_h Z ainX]‘)/a—“’, izl,...,n. (16)

=1

It has been proved [6] that the iterative process (16) converges to the solution to (4) under
special restrictions on the input data A, b given in implicit form and a rather restrictive
choice of the initial approximation. We formulate explicit conditions on the matrix A and
prove that under these conditions (16) converges to the solution to (4) with an arbitrary
initial approximation and arbitrary right-hand side b. We first rewrite (16) in matrix form:

x = D' x(b—;(A—;D)xx), D=D(A) (17)

Proposition 3.1 If | D(A)™' |[< ¢ <1, || A=, D(A) ||< g < 1, then (4) has a solution

x* € D" and method (17) converges to x* for any b € D™ and any initial approximation
(0) n

x% e D™,



Proof. For x € D" denote B(x) =D~ x (b —; (A —, D) x x). For x, y€ D" we have
I B(x) —x B(y) || D™ x (b—4 (A —; D) xx) = D™ x (b—; (A—; D) xy) |
< DT (b =4 (A =1 D) xx) = (b—4 (A=, D) xy) |
D™l (A =2 D) xy =1 (A= D) x x|
IDT A =D Iy —rx < q |y —nx|,

IN

using Proposition 2.4. The inequality || B(x) —» B(y) ||< ¢* || y —& x || shows that B is a
contraction mapping. This combined with Proposition 2.5 proves the theorem. a

Proposition 3.2 Let A = A = (a;) € R™" be a real matriz and let the numbers a; 1A\ i,
where A; j is the subdeterminant of a;, have constant signs for all 1,k = 1,2,...,n. Then
for the solution to Ax = b the following Cramer-type formula holds:

1o 1 atr ... b1 N AT
i Def . . . . .
(Xi)o(a) = x > (1) Ay(b),, = N (18)

=1 aip ... bp ... apn
where \; p = (—)Hk ={+, 1+ k even; —, i + k odd}.

The proof is obtained using the propositions in section 2. A class of matrices satisfying
the conditions of the theorem is the class of Wandermond matrices, appearing in interpola-
tion theory. This makes the above formula suitable for the exact solution of identification
problems in an interval interpolation setting [9, 11]. If the conditions of the theorem do not
hold, formula (18) can still be used for the computation of an initial approximation to the
solution as proposed in the next section.

4 Numerical algorithm

The results of the previous section allow us to formulate the following

Numerical Algorithm
1. Check the conditions || D= ||< 1, || A -, D < 1.

2. Compute an initial approximation x(©) applying formulae (18) for
the interval algebraic problem mid(A)x = b.

3. Using x(© iterate according to

X(k+1) = D_1 X (b —h (A ~h D) X X(k)) ) k= 07 17 T

The above iterative method was implemented in the computer algebra system Mathe-
matica [17] using an experimental package for generalized interval arithmetic [12]. A Mathe-
matica function AlgebraicIntervalSolve[m_, b_, opts___] returns a list with the com-
puted approximations for the algebraic solution to a given interval system with matrix A
and right-hand-side vector b of directed intervals.
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As initial approximation, AlgebraicIntervalSolve uses an appropriate initial approxi-
mation of the algebraic solution. AlgebraicIntervalSolve automatically starts iterations
from the solution (18) to the system mid(A)x = b where mid(A) = ((afj + a;»;)/Z). One can
give the AlgebraicIntervalSolve an other initial approximation of the algebraic solution
by using the option InitialApproximation.

Several options can be used to control the number of iterations performed by the function
AlgebraicIntervalSolve. First, one can set MaxIterations to specify the maximum num-
ber of iterations that AlgebraicIntervalSolve should use. If AlgebraicIntervalSolve
does not find a good solution in the number of steps that have been specified, it returns the
last values that have been computed. These values can be used as InitialApproximation
if one needs to continue the iterations. To check if an acceptable solution has been found,
AlgebraicIntervalSolve iterates and sees whether the differences in the end-points of the
interval components between two successive approximations of the algebraic solution are
within the accuracy specified by the option AccuracyGoal.

option name default value function

Initial Approximation Automatic approximate solution to the system using
mid-points of the directed input intervals
of matrix A

WorkingPrecision $MachinePrecision number of digits of precision to be kept
during the computations

AccuracyGoal 1076 accuracy to which two successive approx-
imations differ

MaxIterations $IterationLimit maximum number of iterations to be per-
formed in finding approximations to the
algebraic solution

IterationList False gives the list of approximations obtained
at each step of the iterative process

Table 1. Options for AlgebraicIntervalSolve.

AlgebraicIntervalSolve uses the precision specified by the option WorkingPrecision
in the computational process. For the purpose of debugging one can ask AlgebraicInterval
Solve to give the whole list of approximations obtained at each step of the iterative process
by using the option IterativeList. Table 1 gives the options for AlgebraicIntervalSolve
and their default values.
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