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1 Introduction

Certain practically important systems, such as systems of convex bodies,
zonotopes, intervals, interval vectors and functions, stochastic numbers, etc.,
are (cancellative) quasilinear spaces with respect to addition and multiplica-
tion by scalars. These spaces are abelian cancellative monoids with respect
to addition. With respect to multiplication by scalars they satisfy the ax-
ioms of a linear space with one exception: the second distributive law is
weakened up to a so-called “quasidistributive law” stating that distributiv-
ity is obligatory only for equally signed scalars.

An important special case of a quasilinear space is the case when the
abelian cancellative monoid is an abelian group. A quasilinear space with
group structure is very closed to a vector space. Every quasilinear space can
be embedded in one with group structure — therefore quasilinear spaces
with group structure can be effectively used for computations.

We concentrate on the algebraic properties of quasilinear spaces with
group structure. We show that every quasilinear space with group structure
is a direct sum of a linear space (of distributive elements) and a space of
symmetric elements. The properties of the latter spaces are studied in detail
using two different approaches.

The theory of quasilinear spaces of group structure is presented in a
comprehensive way and their relation to vector spaces is made clear. Some
previous accounts of this theory can be found in [9], [10], [12], [13]. Here we
do not consider quasilinear spaces of monoid structure, the interested reader
may consult [7], [9] for this case.

2 Quasilinear spaces of monoid structure

Preliminaries. We assume familiarity with elementary set theory and the



concepts of set membership ∈, and the subset relations ⊆ and ⊂. If X and
Y are sets, then the cartesian product X × Y is the set of ordered pairs
{(x, y) | x ∈ X, y ∈ Y }; if X = Y , then X × Y is written as X2. Similarly
ordered triples, 4-tuples, etc. members of a set X may be constructed.

In what follows we assume that the linearly ordered (l. o.) real field
R = (R,+, ·,≤) is well known. We next recall and comment the definition
of a linear space. In the sequel we use the terms “linear space” and “vector
space” as synonyms.

Definition 1. An algebraic system (L,+,R, ·) is a linear space (over the
real field R), if for a, b, c ∈ L, α, β, γ ∈ R:

(a+ b) + c = a+ (b+ c), (1)

a+ 0 = a, (2)

a+ b = b+ a, (3)

a+ (−a) = 0, (4)

α · (β · c) = (αβ) · c, (5)

1 · a = a, (6)

γ · (a+ b) = γ · a+ γ · b, (7)

(α+ β) · c = α · c+ β · c. (8)

Remark. Equality (2) is a brief notation of the property: “for every
a ∈ L there exists a neutral element with respect to addition with the
property (2)”; equality (4) means: “for every a ∈ L there exists an additive
inverse (opposite) element with the property (4)”. The null element of L,
see relation (2), and the null in R, are denoted by the same symbol “0”.
The additive inverse to a ∈ L is denoted by “−a”.

A linear space can be defined also by relaxing the group axiom (4),
replacing it by the weaker cancellation law a + c = b + c =⇒ a = b. Thus,
the following definition of a linear space is equivalent to Definition 1.

Definition 2. An algebraic system (L,+,R, ·) is a linear space (over R), if
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for a, b, c ∈ L, α, β, γ ∈ R:

(a+ b) + c = a+ (b+ c), (9)

a+ 0 = a, (10)

a+ b = b+ a, (11)

a+ c = b+ c =⇒ a = b, (12)

α · (β · c) = (αβ) · c, (13)

1 · a = a, (14)

γ · (a+ b) = γ · a+ γ ∗ b, (15)

(α+ β) · c = α · c+ β · c. (16)

To check the equivalence between Definition 1 and Definition 2, note
that substituting α = 1, β = −1 in (16) gives the relation 0 = c+ (−1) · c,
that is the element (−1) · c is the opposite to c, symbolically −c = (−1) · c.
One can also observe that the condition for existence of a neutral element
for addition is redundant, as such is the element 0 · c. Indeed, using (16)
with α = 1, β = 0, we obtain c+ 0 · c = 1 · c+ 0 · c = (1 + 0) · c = 1 · c = c,
implying 0 ·c = 0. Definition 2 is methodologically useful for the comparison
between linear and quasilinear spaces to be defined next.

A quasilinear space (of monoid structure) is defined by relaxing
axiom (16) in the set of linear space axioms (9)–(16). Namely, we have:

Definition 3. An algebraic system (Q,+,R, ∗) is a quasilinear space (of
monoid structure, over R), if for A,B,C ∈ Q, α, β, γ ∈ R:

(A+B) + C = A+ (B + C), (17)

A+ 0 = A, (18)

A+B = B +A, (19)

A+ C = B + C =⇒ A = B, (20)

α ∗ (β ∗ C) = (αβ) ∗ C, (21)

1 ∗A = A, (22)

γ ∗ (A+B) = γ ∗A+ γ ∗B, (23)

(α+ β) ∗ C = α ∗ C + β ∗ C, if αβ ≥ 0. (24)

Relation (24) is called quasidistributive law.

Note that the difference between the definitions of a linear and a quasi-
linear space, namely between Definition 2 given by (9)–(16) and Definition
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3 given by (17)–(24), consists just in the restriction αβ ≥ 0 in (24). Let us
note that this restriction does not permit us to conclude that the quasivec-
tor space is a group, as we did in the case with Definition 2. Clearly, every
linear space is quasilinear. However, due to the restriction αβ ≥ 0 made in
(24) a quasilinear space may not be necessarily linear. In fact, all practically
important quasilinear spaces, like those of intervals, convex bodies etc., are
not linear.

We have used upper case letters in (17)–(24) in order to emphazise that
such elements may not have additive inverse (opposite), that is a quasilinear
space may not be a group. In particular a quasilinear space may be a group
(without beeing linear). Such a quasilinear space is called a quasivector
space (with group structure); the precise definition will be given in the next
section. We now discuss the defining properties of a quasilinear space in
some detail.

Consider first properties related to the operation addition. Assume that
Q is a set of elements with a binary operation addition “+”: Q×Q −→ Q
and an element null “0”, such that for all A,B,C ∈ Q:

(A+B) + C = A+ (B + C), (25)

A+ 0 = A, (26)

A+B = B +A, (27)

A+ C = B + C =⇒ A = B. (28)

Properties (25)–(26) define a semigroup with null, that is a monoid (Q,+).
The monoid is abelian (27) and cancellative (28).

An element A of an abelian cancellative (a. c.) monoid (Q,+) is invert-
ible, if there exists X ∈ Q, such that A + X = 0; in this case the (unique)
element X is the opposite of A, symbolically we write X = opp(A) (for an
opposite element we shall avoid the notation “−”, of course we shall use the
minus notation in the field R).

Denote the set of all invertible elements in (Q,+) by QD. The system
(QD,+) is an abelian group, which is not empty due to 0 ∈ QD.

Consider next properties related to the operation multiplication by
real scalars. Let Q be an a. c. monoid and R be the ordered field of reals.
Assume that a multiplication by real scalars ∗ : R × Q −→ Q is defined,
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such that for A,B,C ∈ Q, α, β, γ ∈ R:

α ∗ (β ∗ C) = (αβ) ∗ C, (29)

1 ∗A = A, (30)

γ ∗ (A+B) = γ ∗A+ γ ∗B, (31)

(α+ β) ∗ C = α ∗ C + β ∗ C, αβ ≥ 0. (32)

Note that the quasidistributive law is less restrictive than the second
distributive law stating that for all elements C of a (linear) system:

(α+ β) ∗ C = α ∗ C + β ∗ C, α, β ∈ R. (33)

The elements of a quasilinear space Q are not required to satisfy (33),
however, there may be elements for which (33) holds. Let C ∈ Q satisfy
(33) for all α, β ∈ R. Substituting α = 1, β = −1 in (33) gives 0 ∗ C =
1∗C+(−1)∗C, that is 0 = C+(−1)∗C. Hence, the element C is invertible,
and opp C = (−1) ∗ C. Since the set of all distributive elements forms a
linear space, a distributive element, that is an element C ∈ Q, satisfying
(33) (for all α, β ∈ R), is also called linear.

Definition 3 can be briefly formulated as follows:
Let (Q,+) be an a. c. monoid defined by (25)–(28). Assume that mul-

tiplication by real scalar “∗” is defined on R×Q satisfying (29)–(32). The
algebraic system (Q,+,R, ∗) is called a quasilinear space (of monoid struc-
ture, over R).

Historical remarks. O. Mayer [16] defines quasilinear spaces as abelian
monoids (25)–(27) with multiplication by scalars satisfying (29)–(32) and the
additional property

0 ∗A = 0. (34)

Thus a quasilinear space in the sense of O. Mayer is an abelian monoid, which
is not necessarily cancellative [5], [6], [21], [22]. To summarize, O. Mayer’s
quasilinear spaces satisfy axioms (25)–(27), (29)–(32), (34). Mayer’s axioms
can be obtained from the axioms of Definition 3 when replacing the cancel-
lation law (20) by the less restrictive relation (34). Every cancellative quasi-
linear space is a quasilinear space in the sense of Mayer. For the cancellation
law together with (24), gives 0∗A+0 = 0∗A = (0+0)∗A = 0∗A+0∗A im-
plying 0 = 0∗A, showing that relation (34) holds true. O. Mayer’s definition
does not assume cancellation law so that relation (34) does not follow from
(24) and is an independent axiom. Clearly, Mayer’s quasilinear spaces are
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generalizations of quasilinear spaces in the sense of Definition 3. Mayer’s
spaces are too general for the abstract description of interval and convex
body spaces, where cancellation plays an important role. The more restric-
tive Definition 3 presents a suitable platform for the study of convex body
spaces, as this is demonstrated in the sequel.

In what follows we shall be concerned only with cancellative quasilinear
spaces. For this reason, in the sequel under a quasilinear space we shall
always mean a cancellative quasilinear space.

Multiplication by “−1” is called negation in Q and is denoted by “¬”,
that is ¬A = (−1) ∗ A. Subtraction in Q is A + (¬B) = A + (−1) ∗ B and
is denoted A ¬ B.

3 Quasivector Spaces: Definition

Embedding an a. c. monoid in a group. Every abelian monoid (M,+)
with cancellation law induces an abelian group (D(M),+), where D(M) =
M2/∼ is the difference (quotient) set of M consisting of all pairs (A,B)
factorized by the congruence relation∼: (A,B) ∼ (C,D) iff A+D = B+C,
for all A,B,C,D ∈ M. Addition in D(M) is defined by (A,B) + (C,D) =
(A+C,B+D). The neutral (null) element of D(M) is the class (Z,Z), Z ∈
M; due to the existence of null element inM, we have (Z,Z) ∼ (0, 0). The
opposite element to (A,B) ∈ D(M) is opp(A,B) = (B,A). The mapping
ϕ : M −→ D(M) defined for A ∈ M by ϕ(A) = (A, 0) ∈ D(M) is an
embedding of monoids. We embed M in D(M) by identifying A ∈ M with
the equivalence class (A, 0) ∼ (A + X,X), X ∈ M; all elements of D(M)
admitting the form (A, 0) are called proper and the remaining are improper.
The set of all proper elements of D(M) is ϕ(M) = {(A, 0) | A ∈M} ∼=M.

Using the above construction every quasilinear space (M,+,R, ∗) can
be embedded into the group (D(M),+). Multiplication by scalars “∗” is
extended from R × M to R × D(M) by means of the following natural
definition of ∗ : R×D(M) −→ D(M):

γ ∗ (A,B) = (γ ∗A, γ ∗B), A, B ∈M, γ ∈ R. (35)

In particular, multiplication by the scalar −1 in D(M), called negation, is

¬(A,B) = (−1) ∗ (A,B) = (¬A,¬B), A, B ∈M. (36)

Note that (A,B) is proper if and only if γ ∗ (A,B) is proper. Indeed,
(A,B) = (C, 0)⇐⇒ A = B+C ⇐⇒ γ ∗A = γ ∗ (B+C) = γ ∗B+γ ∗C ⇐⇒
(γ ∗A, γ ∗B) = (γ ∗ C, 0).
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More about quasilinear spaces with monoid structure can be found in [9].
Here we concentrate on the space D(M), resp. on quasilinear spaces with
group structure, to be briefly called quasivector spaces. In the sequel we shall
use lower case roman letters to denote the elements of quasivector spaces
of group structure, such as D(M), writing e. g. a = (A1, A2), A1, A2 ∈ M.
For example, (36) can be written: ¬a = (−1) ∗ a; a ¬ b means a+ (¬b), etc.
The definition of a quasivector space follows.

Definition 4. A quasivector space (over the l. o. field R), denoted (Q,+,R, ∗),
is an abelian group (Q,+) with a mapping (multiplication by scalars) “∗”:
R×Q −→ Q, such that for a, b, c ∈ Q, α, β, γ ∈ R:

γ ∗ (a+ b) = γ ∗ a+ γ ∗ b, (37)

α ∗ (β ∗ c) = (αβ) ∗ c, (38)

1 ∗ a = a, (39)

(α+ β) ∗ c = α ∗ c+ β ∗ c, if αβ ≥ 0. (40)

Remarks. 1) In (40) and (38) the sum α+β, resp. the product αβ = α·β
and the relation αβ ≥ 0 are well-defined in the linearly ordered real field
R = (R,+, ·,≤). 2) It is easy to see that, if the condition αβ ≥ 0 in
the quasidistributive law (40) is replaced by the condition α ≥ 0, β ≥ 0,
then an equivalent definition is obtained. 3) Note the difference between a
quasilinear and a quasivector space in our terminology: a quasivector space
is always an additive group, whereas a quasilinear space is an additive a. c.
monoid that may not be a group in general.

Clearly, every vector space is a quasivector one and every quasivector
space is a quasilinear one. The following proposition is straightforward:

Proposition 1. Let (M,+,R, ∗) be a quasilinear space over R, and let
(Q,+), Q = D(M), be the induced abelian group. Let ∗ : R × Q −→ Q be
multiplication by scalars defined by (35). Then (Q,+,R, ∗) is a quasivector
space over R.

Conjugate elements. From opp(a)+a = 0 we obtain ¬opp(a) ¬ a = 0,
that is ¬opp(a) = opp(¬a). The element ¬opp(a) = opp(¬a) is further
denoted by a− and the corresponding operator is called dualization or con-
jugation. We say that a− is the conjugate (or dual) of a.

Relations ¬opp(a) = opp(¬a) = a− imply opp(a) = ¬(a−) = (¬a)−,
which will be shortly denoted opp(a) = ¬a−. The last notation will be
used to denote symbolically the opposite elements instead of the confusing
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notation −a meaning opposite in algebra and negation in convex and interval
analysis. Thus, in a quasivector space we write a ¬ a− = 0, resp. ¬a−+a =
0.

Subspaces are defined as in vector spaces. A subspace of a quasivector
space (Q,+,R, ∗) is a quasivector space (P,+,R, ∗), such that P ⊆ Q (the
operations in P are inherited from Q). If (P,+,R, ∗) is a subspace of the
quasivector space (Q,+,R, ∗) then, of course, (P,+) is an abelian subgroup
of the abelian group (Q,+). A sufficient condition for subspace can be
formulated as follows. H is a subspace of the quasivector space G if and
only if H ⊂ G and H is closed under “+”, “∗”, “−”, i. e.: i) a + b ∈ H for
all a, b ∈ H; ii) α ∗ c ∈ H for all α ∈ R and c ∈ H; iii) a− ∈ H for all a ∈ H.

As an exercise let us show that for any quasilinear space Q the set of
invertable elements forms a subspace of Q. To see this we have to show that
the quasilinear space (QD,+,R, ∗) is a quasilinear subspace of the quasilin-
ear space (Q,+,R, ∗). To see that (QD,+,R, ∗) is closed under “∗” note
that for A ∈ QD we have γ ∗ (oppA) = opp(γ ∗A); indeed, A+ (oppA) = 0
implies γ ∗A+ γ ∗ (oppA) = 0. �

Sum and direct sum of quasivector spaces are defined as in vector
spaces. Namely, for two quasivector spaces U , V their sum is U + V =
{u+ v | u ∈ U, v ∈ V }. Let Z be a quasivector space and U, V be subspaces
of Z. We say that Z is the direct sum of U and V and write Z = U ⊕ V , if
each z ∈ Z can be uniquely presented in the form z = u+ v, where u ∈ U ,
v ∈ V . One can show: 1) a sum U + V is direct, if u1 + v1 = u2 + v2,
u1, u2 ∈ U , v1, v2 ∈ V imply u1 = u2, v1 = v2 (or, equivalently, u + v = 0,
u ∈ U , v ∈ V imply u = 0, v = 0); 2) Z = U ⊕ V ⇐⇒ Z = U + V and
U ∩ V = 0. The elements of U ⊕ V are denoted (u; v). Addition in U ⊕ V
is (u1; v1) + (u2; v2) = (u1 + u2; v1 + v2) and multiplication by scalars is
γ ∗ (u; v) = (γ ∗ u; γ ∗ v).

4 The Quasidistributive Law

Rules for calculation in quasivector spaces. Let (Q,+,R, ∗) be a
quasivector space over R. As (Q,+) is a group, for every a there exists an
opposite element opp(a) = ¬a−, such that a ¬ a− = 0. In a quasivector
space the relation a ¬ a = 0, may not necessarily hold; for due to condition
αβ ≥ 0 in (40) the equality (−1) ∗ a+ 1 ∗ a = (−1 + 1) ∗ a may not be true.
This means that ¬a is not generally the opposite of a (unlike in a vector
space, where negation and opposite coincide).
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Using the group properties, such as 0+a = a, opp(a)+a = 0, opp(a+b) =
opp(a)+ opp(b), a + b = a + c =⇒ b = c, and relations (37)–(40) one can
derive rules for calculation in a quasivector space. A list of such rules is
summarized in the following

Proposition 2. Let (Q,+,R, ∗) be a quasivector space over R. For all
α, β, γ ∈ R and for all a, b, c ∈ Q the following properties hold: 1) 0 ∗ a = 0;
2) γ∗0 = 0; 3) opp(γ∗a) = γ∗opp(a); 4) ¬(γ∗a) = (−γ)∗a; 5) γ∗(a ¬ b) =
γ ∗ a ¬ γ ∗ b; 6) γ ∗ a = 0 =⇒ γ = 0 or a = 0; 7) γ ∗ a = γ ∗ b =⇒ γ = 0
or a = b; 8) (α − β) ∗ c = α ∗ c + (−β) ∗ c = α ∗ c ¬ β ∗ c, αβ ≤ 0; 9)
(
∑n

i=1 αi)∗c =
∑n

i=1 αi∗c, αi ≥ 0, i = 1, ..., n; 10) α∗
∑n

i=1 ci =
∑n

i=1 α∗ci.

Proof. The verification of the above properties is trivial. For example,
we prove the first three properties. 1) We have 1∗a = (1+0)∗a = 1∗a+0∗a,
implying 0 ∗ a = 0. 2) If γ = 0 the relation follows from 1); if γ 6= 0, then
c + γ ∗ 0 = γ ∗ ((1/γ) ∗ c + 0) = γ ∗ ((1/γ) ∗ c) = c, hence γ ∗ 0 = 0. 3)
Assume γ 6= 0. We have to prove that γ ∗ opp(a) + γ ∗ a = 0, that is,
opp(a) + (1/γ) ∗ (γ ∗ a) = 0, which is obviously true. �

Note that y = a− is the unique solution of the equation: y ¬ a = 0,
resp. ¬y + a = 0. For γ ∈ R and a, b ∈ Q we have the following relations
using conjugation: γ ∗ (a ¬ b−) = γ ∗ a ¬ γ ∗ b−; a ¬ a− = ¬a + a− = 0;
γ ∗ a ¬ γ ∗ a− = γ ∗ (a ¬ a−) = 0; a+ b = 0⇐⇒ a = ¬b−; a+ γ ∗ b = 0⇐⇒
a = (−γ) ∗ b− = ¬(γ ∗ b−).

In the sequel we shall make use of the binary set Λ = {+,−} and the
function σ : R −→ Λ defined by:

σ(γ) =

{
+, if γ ≥ 0,
−, if γ < 0.

The “product” λµ, λ, µ ∈ Λ, means ++ = −− = +, +− = −+ = −.

A special symbolic notation. We make the convention a+ = a. Then
the symbolic notation aλ for a ∈ Q, λ ∈ Λ, makes sense; namely aλ is either
a = a+ or a− according to the binary value of λ. Using the notation aλ
one may write rules holding true for all a, b, c ∈ Q, α ∈ R, λ, µ, ν ∈ Λ, such
as: (a + b)λ = aλ + bλ; (aµ + bν)λ = aλµ + bλν ; (α ∗ cµ)ν = α ∗ cµν , e. g.,
(α ∗ cµ)µ = α ∗ c. The possibility to perform such symbolic transformations
justifies the use of the notation a− for conjugate instead of the traditional
notation a.
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The quasidistributive law. The condition αβ ≥ 0 in (40) makes the
impression that there may be some freedom in the form of the distributivity
relation for αβ < 0. The following result shows that this is not the case: it
turns out that (40) determines a specific relation for all α, β ∈ R.

Theorem 1. (Quasidistributive law) Let (Q,+,R, ∗) be a quasivector space
over R. For α, β ∈ R and c ∈ Q we have:

(α+ β) ∗ cσ(α+β) = α ∗ cσ(α) + β ∗ cσ(β). (41)

Proof. In the case σ(α) = σ(β) (41) is true by assumption (40). Con-
sider the case σ(α) = −σ(β). Assume that 0 ≤ α, β < 0 and 0 < −β ≤ α. In
this subcase we have 0 ≤ α+β, so that (41) reads: (α+β)∗c = a∗c+β ∗c−.
Using (40), we can write

α ∗ c+ β ∗ c− = ((α+ β)− β) ∗ c+ β ∗ c−
= (α+ β) ∗ c ¬ β ∗ c+ β ∗ c−
= (α+ β) ∗ c+ β ∗ (¬c+ c−) = (α+ β) ∗ c,

so that (41) is proved to hold true in this subcase. The remaining subcases
are verified similarly. �

For α = 1, β = −1 (41) yields 0 = c ¬ c−, which is, of course, true.
Relation (41) shows that c can be always factored out in an expression of
the form α ∗ cσ(α) + β ∗ cσ(β). “Dualizing” by σ(α+ β), relation (41) can be
written in the equivalent form

(α+ β) ∗ c = α ∗ cσ(α)σ(α+β) + β ∗ cσ(β)σ(α+β). (42)

Relations (41) and (42) are convenient for symbolic computations. By con-
trast, without the use of binary variables and the aλ-notation, formula (42)
obtains the form

(α+ β) ∗ c =


α ∗ c+ β ∗ c, if αβ ≥ 0,
α ∗ c+ β ∗ c−, if αβ < 0, |α| ≥ |β|,
α ∗ c− + β ∗ c, if αβ < 0, |α| < |β|,

which can be hardly used for symbolic manipulations.
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5 Decomposition of Quasivector Spaces

Definition 5. Q is a quasivector space. An element a ∈ Q with a ¬ a = 0
is called linear. An element a ∈ Q with ¬ a = a is called symmetric or
centred.

It can be easily checked that in a quasivector space Q the subsets of
linear and symmetric elements Q′ = {a ∈ Q | a ¬ a = 0}, resp. Q′′ = {a ∈
Q | a = ¬a} form subspaces of Q.

Proposition 3. Assume that Q is a quasivector space. The subspace Q′ =
{a ∈ Q | a ¬ a = 0} is a vector space.

Indeed, we only have to check that relation (40) becomes true for all
values of the scalars. However, this is obvious from (41).

Definition 6. Assume that Q is a quasivector space. The space Q′ = {a ∈
Q | a ¬ a = 0} is called the linear subspace of Q and the space Q′′ = {a ∈
Q | a = ¬a} is called the symmetric (centred) subspace of Q.

Below we summarize some of the properties of the linear and symmetric
elements:

1. a ∈ Q′ ⇐⇒ a = a− ⇐⇒ a ¬ a = 0⇐⇒ ¬a = opp(a)

⇐⇒ ∃c ∈ Q : a = c+ c−;

2. b ∈ Q′′ ⇐⇒ b = ¬b⇐⇒ b+ b− = 0⇐⇒ b− = opp(b)

⇐⇒ ∃d ∈ Q : b = d ¬ d.

To prove existence, in case 1 take c = (1/2) ∗ a + s, where s ∈ Q′′ is
arbitrary, and in case 2 take d = (1/2) ∗ b+ t, where t ∈ Q′ is arbitrary.

Representation of a quasivector space as a direct sum of a vector
and a symmetric subspace. The next theorem shows that every quasivector
space is a direct sum of a vector space and a symmetric quasivector space.

Theorem 2. (Decomposition theorem) For every quasivector space Q
we have Q = Q′⊕Q′′. More specifically, for every x ∈ Q we have x = x′+x′′

with unique x′ = (1/2) ∗ (x+ x−) ∈ Q′, and x′′ = (1/2) ∗ (x ¬ x) ∈ Q′′.
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Proof. Assume x ∈ Q. Using that x− ¬ x = 0 we have

x′ + x′′ = (1/2) ∗ (x+ x−) + (1/2) ∗ (x ¬ x)

= (1/2) ∗ (x+ x+ x− ¬ x) = x.

On the other side we have x′ = (1/2) ∗ (x + x−) ∈ Q′ and x′′ = (1/2) ∗
(x ¬ x) ∈ Q′′. Hence, Q = Q′ + Q′′. Furthermore, Q′ ∩ Q′′ = 0. Indeed,
assume x ∈ Q′ and x ∈ Q′′. Then we have simultaneously x ¬ x = 0 and
x = ¬x, implying x = 0. Hence Q = Q′ ⊕Q′′. �

Theorem 2 states that every element x ∈ Q can be decomposed in a
unique way as x′+x′′, where x′ is an element of a vector space and x′′ belongs
to a symmetric quasivector space. We call x′ the linear part (coordinate)
of x, and x′′ — the symmetric (centred) part (coordinate) of x, and write
x = (x′;x′′).

In a quasivector space Q the property a = opp(a) is satisfied only by the
null element 0 of Q. Indeed, a = ¬a− is equivalent to a+a = 0, or 2∗a = 0,
resp. a = 0.

Since the distributivity relation is of different form in a vector, resp.
symmetric quasivector space, one may wonder how this fact agrees with
Theorem 2. Indeed, assume c ∈ Q with c = c′ + c′′, c′ ∈ Q′, c′′ ∈ Q′′,
equivalently: c = (c′; c′′). Relation (41) decomposes into

(α+ β) ∗ c′σ(α+β) = α ∗ c′σ(α) + β ∗ c′σ(β),
(α+ β) ∗ c′′σ(α+β) = α ∗ c′′σ(α) + β ∗ c′′σ(β).

Using that c′ is linear, we have c′ = c′−, so that the first relation is equivalent
to the familiar second distributive law: (α + β) ∗ c′ = α ∗ c′ + β ∗ c′. The
second relation retains the form of (41), however, here we should keep in
mind that a centred element c′′ satisfies c′′− = opp(c′′).

Hints for practical applications. In practice we need to know how
to solve problems formulated in quasilinear spaces with monoid structures,
like convex bodies and intervals. Assume that M is a quasilinear space
(with monoid structure), cf. Definition 3, and Q = D(M) is the induced
quasivector space of factorized pairs (A,B), A,B ∈ M. Let us check how
proper elements of Q of the form a = (A, 0) are decomposed in the form
a = a′ + a′′ = (a′; a′′). Are both coordinates a′, a′′ of a proper element
(a′; a′′) ∈ Q always proper? From Theorem 2 we have a′ = (1/2) ∗ (a +
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a−), a′′ = (1/2) ∗ (a ¬ a). Substituting a by (A, 0) and multiplying by 2 we
have

2 ∗ a′ = a+ a− = (A, 0) + (0,¬A) = (A,¬A), (43)

2 ∗ a′′ = a ¬ a = (A, 0) + (¬A, 0) = (A ¬ A, 0). (44)

Relation (44) shows that the symmetric part of a proper element is always
proper. However, we see from (43) that the linear part a′ = (A,¬A) of a
proper element (A, 0) is not a proper element in general. Next question:
when the linear part is a proper element? The element (A,¬A) is proper, if
there exists X ∈ M, such that (A,¬A) = (X, 0), that is A = X ¬ A. For
example, in the case of two-dimensional convex bodies, if A is a (proper)
triangle, then such X does not exist and consequently the linear part of A is
an improper element. In such a situation we need to interpret results which
are improper in terms of proper elements.

6 Examples of Quasivector Spaces

Example 1. The system (K,+) of all convex bodies [25] in a real m-
dimensional Euclidean vector space Em with set-theoretic (vector, Minkowski)
addition: A + B = {α + β | α ∈ A, β ∈ B}, A,B ∈ K, is a proper abelian
monoid with cancellation law having as a neutral element the origin “0” of
Em. The system (K,+,R, ∗), where “∗” is the set-theoretic multiplication
by real scalars: γ∗A = {γα | α ∈ A}, is a quasilinear space (of monoid struc-
ture) [19]. To see that the distributive law is violated for convex bodies (and,
in particular, for intervals) when αβ < 0, recall that an origin symmetric
convex body C satisfies (−1)∗C = C; hence 1∗C+(−1)∗C = C+C = 2∗C.
On the other side, (1−1)∗C = 0∗C = 0, showing that the second distribu-
tive law (α + β) ∗ C = α ∗ C + β ∗ C is not valid for α = 1, β = −1 (unless
C = 0). The monoid (K,+) induces a group of generalized (extended, di-
rected) convex bodies (D(K),+), which has been considered by a number of
authors, see e. g. [20]. In [9] we investigate the space (D(K),+,R, ∗), where
“∗” is defined by (35).

Remark. H. Radström [20] studies the following multiplication by
scalars in (D(K),+):

γ · (A,B) =

{
(γ ∗A, γ ∗B), if γ ≥ 0,
(|γ| ∗B, |γ| ∗A), if γ < 0.

(45)

If γ < 0, then γ · (A, 0) = (0, |γ| ∗A), which is an improper result. Therefore
definition (45) does not provide an extension of multiplication by scalars in
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K. Indeed, for A ∈ K and γ < 0, the element γ · A should be a proper
element, γ ·A ∈ K, that is, we should have γ · (A, 0) = γ ∗ (A, 0) = (γ ∗A, 0),
which is not the case. In particular, multiplication by γ = −1 should produce
(¬A, 0), whereas (45) gives (0,¬A).

Example 2. A special case of convex bodies are n-dimensional intervals,
also called n-dimensional boxes [1], [17], [26], [27]. Given u′, u′′ ∈ Rn,
u′′ ≥ 0, the set u = {ξ | u′−u′′ ≤ ξ ≤ u′+u′′} is a (compact) n-dimensional
interval on Rn with midpoint (center) u′ and radius u′′, in end-point notation:
u = [u′ − u′′, u′ + u′′]. The midpoint-radius (center-radius) presentation
an interval u ∈ I(R)n, briefly called MR-form, is u = (u′;u′′), where u′,
u′′ ∈ Rn, u′′ ≥ 0. A common interpretation says that u is an approximate
number (vector) with a representative value u′ and error bound u′′. The
set of all intervals on Rn is denoted by I(R)n; in particular, for n = 1
the set of intervals on R is denoted by I(R). An n-dimensional interval
is an n-tuple of one-dimensional intervals, symbolically u = (u1, u2, ..., un),
ui = (u′i;u

′′
i ) ∈ I(R), i = 1, 2, ..., n. For the midpoint and the radius we have

u′ = (u′1, ..., u
′
n), u′′ = (u′′1, ..., u

′′
n) ∈ Rn, u′′ ≥ 0, cf. [8], [11], [23], [24].

Consider the interval arithmetic system (I(R)n,+,R, ∗). Addition and
multiplication by scalar are defined for a, b ∈ I(R)n, γ ∈ R, by a + b =
{α+ β | α ∈ a, β ∈ b}, γ ∗ b = {αβ | β ∈ b}. In MR-form we have:

a+ b = (a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′), (46)

γ ∗ b = γ ∗ (b′; b′′) = (γb′; |γ|b′′). (47)

Multiplication by −1 (negation): −1 ∗ b = −1 ∗ (b′; b′′) = (−b′; b′′) is
briefly denoted ¬b = −1 ∗ b. Subtraction

a+ (¬b) = a+ (−1) ∗ b = (a′ − b′; a′′ + b′′) (48)

is briefly denoted as a ¬ b = a + (−1) ∗ b. We have a ¬ b = {α − β | α ∈
a, β ∈ b}.

Remark. The expressions (a′ + b′; a′′ + b′′),- (γb′; |γ|b′′), (a′ − b′; a′′ +
b′′) in the right-hand sides of (46)–(48) are n-dimensional intervals whose
midpoints and radii are n-tuples, e. g. a′ + b′ = (a′1 + b′1, ..., a

′
n + b′n),

a′′ + b′′ = (a′′1 + b′′1, ..., a
′′
n + b′′n), etc. One can also present (46)–(48) first

entry-wise in I(R)n, i. e. a + b = (a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 +
b1, a2 + b2, ..., an + bn), α ∗ b = α ∗ (b1, b2, ..., bn) = (α ∗ b1, α ∗ b2, ..., α ∗ bn),
a ¬ b = (a1 ¬ b1, a2 ¬ b1, ..., an ¬ bn), and then using formulae (46)–(48)
for the one-dimensional components, namely ai + bi = (ai

′ + bi
′; a′′i + b′′i ),

α ∗ bi = (α ∗ bi′; |α| ∗ b′′i ), ai ¬ bi = (ai
′ − bi′; a′′i + b′′i ), i = 1, ..., n.
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The presentation a = (a′; 0)+(0; a′′) shows that every interval is a sum of
a point interval of the form (u; 0) and a centred (origin-symmetric) interval
of the form (0; v), v ≥ 0.

The interval arithmetic system (I(R)n,+,R, ∗) is a quasilinear space (of
monoid structure) [5], [6], [16], [21], [22]. This space induces a quasivector
space (D(I(R)n),+,R, ∗) of generalized/directed intervals [4], [10]. We have
D(I(R)n) = Vn ⊕ Sn, where Vn = (Rn,+,R, ·), n ≥ 1 is the familiar linear
(vector) space under the operations of addition and multiplication by scalars,
and Sn is the symmetric quasivector space presented in the next Example.

Example 3. For any integer k ≥ 1 the set Rk of all k-tuples (α1, α2, ..., αk),
where αi ∈ R and (α1, α2, ..., αk) = (β1, β2, ..., βk) if and only if α1 =
β1, α2 = β2, ..., αk = βk, forms a quasivector space over R under the fol-
lowing operations

(α1, α2, ..., αk) + (β1, β2, ..., βk) = (α1 + β1, α2 + β2, ..., αk + βk), (49)

γ ∗ (α1, α2, ..., αk) = (|γ|α1, |γ|α2, ..., |γ|αk), γ ∈ R. (50)

This quasivector space is denoted by Sk = (Rk,+,R, ∗) and called canon-
ical symmetric quasivector space (of dimension k). Note that multiplication
by −1 (negation) in Sk is same as identity while the opposite operator is
same as conjugation:

opp(α1, α2, ..., αk) = (α1, α2, ..., αk)− = (−α1,−α2, ...,−αk).

Denoting S = S1, we have Sk = S⊕ S⊕ . . .⊕ S.

Example 4. Consider the set of infinite sequences (α1, α2, ...), αi ∈ R,
with addition and multiplication by scalars defined as in (49) and (50), i. e.:

(α1, α2, ...) + (β1, β2, ...) = (α1 + β1, α2 + β2, ...),

γ ∗ (α1, α2, ...) = (|γ|α1, |γ|α2, ...), γ ∈ R.

We again obtain a quasivector space.

Example 5. Consider the direct sum Vl⊕Sk of the l-dimensional vector
space Vl = (Rl,+,R, ·) and the quasivector space Sk = (Rk,+,R, ∗) from
Example 3. The elements of Vl ⊕ Sk are n-tuples, n = l + k, of the form
(λ1, ..., λl;λl+1, ..., λl+k). Addition and multiplication by scalars (γ ∈ R)
are:

(λ1, ..., λl;λl+1, ..., λl+k) + (µ1, ..., µl;µl+1, ..., µl+k)

= (λ1 + µ1, ..., λl + µl;λl+1 + µl+1, ..., λl+k + µl+k),

γ ∗ (λ1, ..., λl;λl+1, ..., λl+k) = (γλ1, ..., γλl; |γ|λl+1, ..., |γ|λl+k).
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As direct sum of two quasivector spaces, Vl ⊕ Sk is a quasivector space.
Negation

(−1) ∗ (λ1, ..., λl;λl+1, ..., λl+k) = (−λ1, ...,−λl;λl+1, ..., λl+k)

is distinct from opposite: opp(λ1, ..., λl+k) = (−λ1, ...,−λl;−λl+1, ...,−λl+k).
The composition of the opposite and negation operators yields:

opp(¬(λ1, ..., λl; λl+1, ..., λl+k)) = (λ1, ..., λl;−λl+1, ...,−λl+k).
The space Vl ⊕ Sk can be used for an explicite presentation and compu-

tation with zonotopes, see e. g. [14], [15]. For l = k we have the space of
boxes considered in Example 2.

Example 6. The set of all real functions is a quasivector space if we
define f + g as the function whose value at x is f(x) + g(x), and γ ∗ f as a
function whose value at x is

γ ∗ f(x) =

{
γ · f(x), if γ ≥ 0,
|γ| · f(−x), if γ < 0.

(51)

In particular, negation is: −1 ∗ f(x) = f(−x). Note that in this quasivec-
tor space negation is distinct from opposite opp(f) = −f . Note that the
composition of opposite and negation −f(−x) is a new operator. The op-
eration (51) appears in the theory of (differences of) support functions, cf.
[9]. We note that, if f is the support function of A ∈ K, then (51) is the
support function of the convex body γ ∗A; in particular, −1 ∗ f(x) = f(−x)
is the support function of ¬A. The symmetric (centred) functions are those
satisfying f(x) = f(−x) and the linear ones are those with the property
g(x) + g(−x) = 0, that is −g(x) = g(−x).

Example 7. Let C = (C,+,R, ·) be the vector space of all complex
numbers c = c1+ic2 with addition: (c1+ic2)+(d1+id2) = (c1+d1)+i(c2+d2)
and multiplication by real scalars: γ · (c1 + ic2) = γc1 + iγc2. Opposite is
−c = −c1 − ic2. Another important involution in C is conjugation. We
shall show that, when equipped with conjugation, C is a quasivector space.
Conjugate elements are introduced in C by means of: c− = c = c1 − ic2; in
particular i = −i. Define a new “quasivector” multiplication by scalars in
C by:

γ ∗ c =

{
γ · c, if γ ≥ 0,
γ · c, if γ < 0.

Negation in C∗ is ¬c = (−1) ∗ c = −c = −(c1 − ic2) = −c1 + ic2. The
system C∗ = (C,+,R, ∗) is a quasivector space. Indeed, using the nota-
tion c− = c, c+ = c, it is easy to show that relation (41) holds. We have
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C∗ = V1⊕Im, where Im = (Im, +,R, ∗) is the symmetric quasivector space
of purely imaginary numbers. Note that in Im negation is same as identity,
whereas conjugation is same as opposite. Note that the “quasivector” mul-
tiplication “∗” of a complex number c by scalars does not change the sign of
the imaginary part c2, whereas the “linear” multiplication “·” may change
it (whenever the scalar is negative).

7 Linear and quasivector operations

Let (Q,+,R, ∗) be a quasivector space over the l. o. field R. Certain
operations in Q are specific for linear spaces and can be characterized as
linear, whereas other operations are specific only for quasivector spaces and
can be characterized as quasivector ones.

Consider the operation “·”: R×Q −→ Q defined for α ∈ R, c ∈ Q by

α · c = α ∗ cσ(α) =

{
α ∗ c, if α ≥ 0,
α ∗ c−, if α < 0.

(52)

Theorem 3. Let (Q,+,R, ∗) be a quasivector space over R. Then (Q,+,R, ·),
with “·” defined by (52), is a vector space over R.

Proof. Indeed, we need to check that the distributive law holds true.
This is obvious if we substitute all terms in the quasidistributive law (41):
(α + β) ∗ cσ(α+β) = α ∗ cσ(α) + β ∗ cσ(β) by the corresponding linear terms
using relation (52), that is α∗cσ(α) = α ·c, β∗cσ(β) = β ·c, (α+β)∗cσ(α+β) =
(α + β) · c, obtaining thus the distributive law (α + β) · c = α · c + β · c.
Checking the rest of the relations of a linear space is trivial. �

Operation (52) is well defined on R×Q for any quasivector space Q over
R; it is called linear multiplication in Q. By contrast, the original multipli-
cation “∗” in R×Q is further called quasivector multiplication. Theorem 3
implies that every quasivector space (Q,+,R, ∗) involves a linear multipli-
cation and hence an associated vector space (Q,+,R, ·).

Remark. Note that the associated vector space (Q,+,R, ·) is not the
linear subspace Q′ from the decomposition theorem; there Q′ consists just
of the linear elements of Q.

Relation (52) shows that the linear multiplication is an inherent opera-
tion for every quasilinear space; although it is not explicitly included in the
notation (Q,+,R, ∗), it is present there in the same way as the operators op-
posite, negation and conjugation are present. For the sake of easy reference
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in the sequel we shall denote the three operations: addition “+”, opposite
“opp” and linear multiplication by scalar “·” as linear operations whereas
the operation quasivector multiplication by scalars “∗” will be denoted as
quasivector (or quasilinear) operation. To this operation we shall add the
operator negation “¬” as special case of the quasivector multiplication by
scalars “∗”. Also we should add the operation conjugation “c−” as com-
position of opposite and negation. To summarize, “∗”, “¬” and “c−” are
quasilinear operations. Any composition or expression involving them will
also be denoted as quasilinear.

Remark. Special cases of linear multiplication have been considered
by Radstroem [20] and Gardenes [2]–[3]. It is easy to see that Radstroem
formula (45) is a consequence of relation (52).

The question arises: is it possible to represent all quasilinear operations
and expressions in a quasivector space by means of linear operations?

The answer to the above question is generally “no”. For we cannot
generally represent in linear terms the quasivector multiplication by scalars.
Indeed, from (52) we have

α ∗ c = α · cσ(α) =

{
α · c, if α ≥ 0,
α · c−, if α < 0.

(53)

Relation (53) shows that the quasivector expression α ∗ c is presented
as α · cσ(α) using the linear multiplication and the quasivector operator
conjugation. Clearly, the quasivector operations “∗”, “¬” and “c−” cannot
be generally represented by means of linear operations. However, in the
sequel we are going to show that such a representation does exist in the
special case of symmetric quasivector spaces.

Up to now when defining a quasivector space we first introduced a quasi-
linear multiplication by scalars, then the operator conjugation is defined as
composition of opposite and negation (which is multiplication by −1). Next
we show that it is possible to proceed in inverse order: to introduce first an
operator with the properties of conjugation and then to define multiplication
by scalars using this operator.

Vector spaces with involution involve quasivector spaces. A
linear transformation i : G −→ G, such that for a, b ∈ G, α ∈ R: 1) i(a+b) =
i(a) + i(b), 2) i(α · c) = α · i(c), satisfying the additional assumption: 3)
i2(a) = a, is called an involution (dual automorphism, symmetry) in G.
Note that an involution also satisfies: i(a) = 0 iff a = 0. In every vector
space (G,+,R, ·), there are (at least) two involutions: identity and opposite.
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Assume that G = (G,+,R, ·) is a vector space over the l. o. field R and
let i be an involution in G. Define ∗ : R× G −→ G by

α ∗ c =

{
α · c, if α ≥ 0,
α · i(c), if α < 0.

(54)

Theorem 4. Let G = (G,+,R, ·, i) be a vector space (over the l. o. field R)
equipped with an involution i. Let ∗ : R×G −→ G be defined by (54). Then
the system (G,+,R, ∗) induced by (G,+,R, ·, i) is a quasivector space.

If we substitute the involution i in (54) by identity i(c) = c, we obtain
α ∗ c = α · c for all α ∈ R, c ∈ G, that is both multiplications “·” and “∗”
coincide; this is a trivial case, as the induced quasivector space coincides
with the original vector space. If we choose the involution in the vector
space to be opposite, i(c) = opp(c), then (54) obtains the form α∗c = |α| ·c.
Setting α = −1 yields ¬c = c meaning that all elements are centred. This
case is discussed in the next section.

Setting α = −1 in (54) we obtain (−1)∗c = (−1) ·i(c) = opp(i(c)). Thus
i coincides with conjugation: i(c) = opp(¬c) = c−, showing that formula
(53) is same as formula (54).

According to Theorem 4 every vector space equipped with involution
i (called conjugation) generates a quasivector space. In the special case,
when the involution coincides with some of the (two) involutions in the
vector space (identity or opposite), then the quasivector space is either linear
or symmetric. If i is neither identity nor opposite, then the quasivector
space has (at least) four involutions: identity, opposite, conjugation (i) and
negation opp(i), which is a composition of opposite and conjugation. In this
latter case the quasivector space can be decomposed as a direct sum of a
linear and a symmetric quasivector space using the decomposition theorem.

8 Symmetric Quasivector Spaces

The decomposition Theorem 2 states that every quasivector space is a direct
sum of a vector space and a symmetric quasivector space. As vector spaces
are well-known, we need to study symmetric quasivector spaces.

A symmetric quasivector space S can be defined axiomatically as an
abelian group with multiplication by scalars (from a l. o. field) satisfying
(37)–(40) together with the additional assumption: ¬a = a for all a ∈
S. Starting from this axiomatic definition one can develop the theory of
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symmetric quasivector spaces following step by step the development of the
theory of vector spaces. This approach has been exploited in [9] and has been
sketched in the Appendix. In this section we concentrate on the relations
between quasivector and linear multiplication by scalars; then the properties
of symmetric quasivector spaces become transparent.

The symmetric case. In a symmetric quasivector space, due to (−1)∗
c = c, we have: α∗c = (−α)∗c = |α|∗c. Hence formula (52) for the induced
linear multiplication in a symmetric quasivector space can be written as

α · c = |α| ∗ cσ(α). (55)

Recall the relation opp (c) = c−, which is true for symmetric elements
and not true in a general quasivector space. This relation shows that, in
the case of symmetric quasivector space, the operation conjugation can be
presented by the linear operation “opposite”. Substituting c− = opp(c) in
(53) gives

α ∗ c = |α| · c. (56)

Relation (56) shows that in a symmetric quasivector space the quasivec-
tor multiplication “∗” is representable by linear operations. In particular,
negation is representable by linear operations, due to ¬c = c. (Note again
that the above is not true in a general quasivector space, but is true in a
symmetric quasivector space.) We thus obtain the following special case of
Theorem 3:

Corollary 1. Let (S,+,R, ∗) be a symmetric quasivector space over
R. The induced vector space (S,+,R, ·), with “·” defined by (55), due to
(56), involves implicitly quasilinear multiplication by scalars, and hence all
quasilinear operations/expressions can be presented by linear ones.

We now formulate the special case of Theorem 4 concerning centred
elements.

Corollary 2. Every vector space over a l. o. field R induces via (56) a
symmetric quasivector space.

Thus to every vector space over a l. o. field (G,+,R, ·), we associate the
symmetric quasivector space (G,+,R, ∗) with “∗” defined by (56). The two
spaces — (Q,+,R, ∗) and (Q,+,R, ·) — differ from each other by having
different operations for multiplication by scalars.

The “symmetric” case can be summarized as follows: Every symmetric
quasivector space over R generates via (55) a lienear multiplication by scalars
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and hence a vector space. Vice versa, every vector space over R induces via
(56) a quasilinear multiplication by scalars and thus a symmetric quasivector
space.

The above allows us to look at the spaces (S,+,R, ∗) and (S,+,R, ·) as
at one and the same space with two different operations for multiplication
by scalars: (S,+,R, ∗, ·). Let (S,+,R, ∗) be a symmetric quasivector space
and (S,+,R, ·) be the associated vector space. It follows from the above,
that all concepts characteristic for the vector space (S,+,R, ·), such as linear
combination, linear dependence, basis etc., can be represented in terms of
the original symmetric quasivector space (S,+,R, ∗). We thus feel free to
use any vector space concepts in the symmetric quasivector space.

For example, using (52) we can reformulate the familiar linear combina-
tion f =

∑k
i=1 αi · c(i) = α1 · c(1) + α2 · c(2) + ... + αk · c(k) in quasivector

terms to obtain:

f = α1 ∗ c(1)σ(α1)
+ α2 ∗ c(2)σ(α2)

+ ...+ αk ∗ c
(k)
σ(αk)

.

For more detail and a self-contained exposition of the theory of symmet-
ric quasivector spaces, see Appendix.

Exercise. Use (56) to define the symmetric quasilinear space corre-
sponding to the vector space Rn and show that this is the space Sn defined
in Example 3. Use relation (55) to define the vector space corresponding to
the symmetric quasivector space Sn and show that this is the space Rn.

As every quasivector space Q is a direct sum Q = V ⊕ S of a vector
space V and a symmetric quasivector space S, we can speak of basis and
dimension of Q, whenever V and S have finite bases. Namely, let V = V l
be a l-dimensional vector space with a basis (v(1), ..., v(l)) and let S = Sk be
a k-dimensional symmetric quasivector space having a basis (s(1), ..., s(k)).
Then we say that (v(1), ..., v(l); s(1), ..., s(k)) is a basis of the (l, k)-dimensional
quasivector space Q = Vl ⊕ Sk.

9 Appendix. Symmetric quasilinear spaces: a self-
contained approach

Linear combinations in symmetric quasivector spaces. Assume that
(S,+,R, ∗) is a symmetric quasivector space. Now all vector space concepts
that are characteristic in the related vector space, such as linear combination,
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linear dependence, basis etc., can be represented in terms of the original
symmetric quasivector space (S,+,R, ∗). For example, the concept of linear
combination obtains the following form.

Let c(1), c(2), ..., c(k) be finitely many (not necessarily distinct) elements
of S. An element f ∈ S of the form

f = α1 ∗ c(1)σ(α1)
+ α2 ∗ c(2)σ(α2)

+ ...+ αk ∗ c
(k)
σ(αk)

, (57)

where α1, α2, ..., αk ∈ R, is called a linear combination of c(1), c(2), ..., c(k) ∈
S.

Proposition 4. Let c(1), c(2), ..., c(k) ∈ S, k ≥ 1. Then the set

H = {
k∑
i=1

αi ∗ c(i)σ(αi)
| αi ∈ R, i = 1, ..., k}

of all linear combinations of c(1), c(2), ..., c(k) is a subspace of S.

The proof is elementary — it can be done by translating the correspond-
ing theorem from the theory of vector spaces in quasivector terminology.

In order to demonstrate the selfsufficiency of the theory of quasivector
spaces, in the remaining part of this Appendix we present some basic notions
of quasivector spaces.

The elements c(1), c(2), ..., c(k) form a generating set for H. We also say
that the subspace H defined in Proposition 4 is spanned by c(1), c(2), ..., c(k)

and write H = span{c(1), c(2), ..., c(k)}.

Let S be a symmetric quasivector space over R. The elements c(1), c(2), ..., c(k)

∈ S, k ≥ 1, are linearly dependent (over R), if there exists a nontrivial lin-
ear combination of {c(i)}, which is equal to 0, i. e. if there exists a system
{αi}ki=1 with not all αi equal to zero, such that

α1 ∗ c(1)σ(α1)
+ α2 ∗ c(1)σ(α2)

+ ...+ αk ∗ c
(k)
σ(αk)

= 0. (58)

Elements of S, which are not linearly dependent, are linearly indepen-
dent. That is, the elements c(1), c(2), ..., c(k) ∈ S are linearly independent, if
(58) is possible only for the trivial linear combination, such that αi = 0 for
all i = 1, ..., k.
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Linear mappings in quasivector spaces. Let Q1 = (Q1,+,R, ∗),
Q2 = (Q2,+,R, ∗) be two quasivector spaces over R and let ϕ : Q1 −→ Q2

be a homomorphic (linear) mapping, that is:

ϕ(x+ y) = ϕ(x) + ϕ(y), (59)

ϕ(λ ∗ x) = λ ∗ ϕ(x), x, y ∈ Q1, λ ∈ R. (60)

It is easy to check that ϕ(x−) = (ϕ(x))−; more generally any linear
mapping satisfies:

ϕ(α1 ∗ x(1)σ(α1)
+ α2 ∗ x(2)σ(α2)

+ ...+ αk ∗ x
(k)
σ(αk)

) = (61)

α1 ∗ ϕ(x(1))σ(α1) + α2 ∗ ϕ(x(2))σ(α2) + ...+ αk ∗ ϕ(x(k))σ(αk),

where α1, α2, ..., αk ∈ R, x(1), x(2), ..., x(k) ∈ Q1. In particular:

ϕ(α ∗ xλ + β ∗ yµ) = α ∗ ϕ(x)λ + β ∗ ϕ(y)µ, x, y ∈ Q1, λ, µ ∈ R. (62)

Condition (62) completely characterizes a linear mapping and can sub-
stitute conditions (59) and (60).

Let S be a symmetric quasivector space and x(1), x(2), ..., x(n) ∈ S and
let Sn = (Rn,+,R, ∗) be the canonic symmetric quasivector space defined
in Example 3. It can be easily checked that the mapping ϕ : Sn −→ S such
that

ϕ(α1, α2, ..., αn) = α1 ∗ x(1)σ(α1)
+ α2 ∗ x(2)σ(α2)

+ ...+ αn ∗ x(n)σ(αn)
(63)

is linear.

Denote e(i) = (0, 0, ..., 0, 1, 0, ..., 0), where the component 1 is on the i-

th place. We consider e(i) as elements of Sn, where opp(e(i)) = e
(i)
− and

¬e(i) = e(i). Relation (63) implies

ϕ(e(i)) = αi ∗ x(i)σ(αi)
|αi=1 = x(i), i = 1, ..., n. (64)

The mapping ϕ is the only linear mapping from Sn to S with the property
(64). Indeed, if (64) holds, then by (61),

ϕ(α1, α2, ..., αn) = ϕ(
∑

αi ∗ e(i)σ(αi)
)

=
∑

αi ∗ ϕ(e(i))σ(αi) =
∑

αi ∗ x(i)σ(αi)
.

We thus obtain that relation (64): ϕ(e(i)) = x(i), i = 1, ..., n, is sufficient
to determine the mapping (63). As in the case of vector spaces, every
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mapping of the set (e(1), ..., e(n)) into S of the form ϕ(e(i)) = x(i), i = 1, ..., n,
can be extended to a unique linear mapping of Sn into S.

Basis in a symmetric quasivector space. Let S be a symmetric
quasivector space over R. The set {c(i)}ki=1, c

(i) ∈ S, k ≥ 1, is a basis of S,
if c(i) are linearly independent and S = span{c(i)}ki=1.

Let S be a symmetric quasivector space over R and {c(i)}ki=1 be a basis of

S. Assume that a =
∑k

i=1 αi ∗ c
(i)
σ(αi)

, b =
∑k

i=1 βi ∗ c
(i)
σ(βi)

are two elements
of S. Their sum is

a+ b =

k∑
i=1

αi ∗ c(i)σ(αi)
+

k∑
i=1

βi ∗ c(i)σ(βi) =

k∑
i=1

(αi + βi) ∗ c(i)σ(αi+βi)
. (65)

Multiplication by scalars is given by

γ ∗ a =
k∑
i=1

|γ|αi ∗ c(i)σ(αi)
=

k∑
i=1

|γ|αi ∗ c(i)σ(|γ|αi)
. (66)

To every a =
∑k

i=1 αi ∗c
(i)
σ(αi)

∈ S we associate the vector (α1, α2, ..., αk).

Then, minding formulae (65), (66), we define addition and multiplication
by scalars by means of (49), (50), arriving thus to the canonic symmetric
quasivector space Sk = (Rk,+,R, ∗) considered in Example 2.

Theorem 5. Any symmetric quasivector space over the l. o. field of reals
R, with a basis of k elements, is isomorphic to Sk = (Rk,+,R, ∗).

Proof. Let S be a symmetric quasivector space spanned over a finite
basis s(1), s(2), ..., s(k). The linear mapping ϕ : Sk −→ S, Sk = (Rk,+,R, ∗),
defined by

ϕ(α1, α2, ..., αk) = α1 ∗ s(1)σ(α1)
+ α2 ∗ s(2)σ(α2)

+ ...+ αk ∗ s
(k)
σ(αk)

,

is a bijection. Hence ϕ is an isomorphism. �

Let S be a symmetric quasivector space spanned over a finite basis
s(1), s(2), ..., s(k). Clearly, as in the linear case, the number k of terms in
the expression for the span does not change with the particular basis, hence
will be called dimension of S.
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10 Concluding Remarks

In this paper we present a novel approach in the exposition of the theory
of quasivector spaces (with group structure), stressing on the relation be-
tween quasivector and vector spaces. We show that every quasivector space
is decomposed into a vector space and a symmetric quasivector space. We
demonstrate that the latter space can be turned into a vector space by a
redefinition of the operation multiplication by scalars. Our investigations
show the theoretical and practical importance of the midpoint-radius rep-
resentation of intervals, already noticed in the pioneering papers [26], [27];
similar representation is used in e. g. [23], [24].
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