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1. Introduction

The abstract axiomatic study of convex bodies with Minkowski addition and multi-
plication by scalars leads to the concept of quasilinear space [3,6,7]. A quasilinear space
over the field of reals can be defined as an additive Abelian monoid with cancellation law
endowed with multiplication by scalars. Every quasilinear space can be embedded in an
(additive) group; thereby a natural isomorphic extension of the multiplication by scalars
leads to quasilinear spaces with group structure briefly called quasivector spaces [5].
Quasivector spaces obey all axioms of vector spaces, but in place of the second distrib-
utive law we have: (α + β) ∗ c = α ∗ c + β ∗ c, if αβ � 0.

Every quasivector space is a direct sum of a vector space and a symmetric quasi-
vector space [4,5]. On the other side, symmetric quasivector spaces are equivalent to
vector spaces in the sense that all algebraic operations in both spaces are mutually rep-
resentable. This equivalence enables us to transfer basic vector space concepts (such as
linear combination, basis, dimension, etc.) to symmetric quasivector spaces. Another
important fact is that symmetric quasivector spaces with finite basis are isomorphic to a
canonic space similar to R

n, see example 1 below. These results can be used for compu-
tations with generalized convex bodies as then we actually work in a vector space. In the
present work this has been demonstrated for the special case of zonotopes. In particular,
an approximation problem related to zonotopes has been formulated and solved using
the theory of quasivector spaces.

In section 2 we briefly introduce some notation and give some properties of quasi-
vector spaces, and, in particular, of symmetric quasivector spaces. Section 3 is devoted
to zonotopes, and section 4 – to an approximation problem for centred zonotopes in the
plane.
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2. Quasivector spaces

By R we denote the set of reals; we use the same notation for the linearly ordered
field of reals R = (R,+, ·,�). For any integer n � 1 denote by R

n the set of all n-tuples
(α1, α2, . . . , αn), where αi ∈ R. The set R

n forms a vector space V
n = (Rn,+, R, ·)

under addition and multiplication by scalars.
Every Abelian monoid (M,+) with cancellation law induces an Abelian group

(D(M),+), where D(M) = M2/ ∼ consists of all pairs (A,B) factorized by the
congruence relation ∼: (A,B) ∼ (C,D) iff A+D = B +C, for all A,B,C,D ∈ M.
Addition in D(M) is (A,B) + (C,D) = (A + C,B + D). The null element of D(M)

is the class (Z,Z), Z ∈ M; we have (Z,Z) ∼ (0, 0). The opposite element to (A,B) ∈
D(M) is opp(A,B) = (B,A). All elements of D(M) admitting the form (A, 0) are
called proper and the remaining are improper. The opposite of a proper element is
improper; opp(A, 0) = (0, A) unless A = 0.

Definition 1. Let (M,+) be an Abelian monoid with cancellation law. Assume that a
mapping “∗” (multiplication by scalars) is defined on R × M satisfying:

(i) γ ∗ (A + B) = γ ∗ A + γ ∗ B,

(ii) α ∗ (β ∗ C) = (αβ) ∗ C,

(iii) 1 ∗ A = A,

(iv) (α + β) ∗ C = α ∗ C + β ∗ C, if αβ � 0.

The algebraic system (M,+, R, ∗) is called a quasilinear space over R.

Every quasilinear space (M,+, R, ∗) can be embedded into a group (D(M),+).
Multiplication by scalars “∗” is naturally extended from R×M to R×D(M) by means
of

γ ∗ (A,B) = (γ ∗ A, γ ∗ B), A,B ∈ M, γ ∈ R. (1)

In the sequel we shall call quasilinear spaces of group structure, such as D(M), qua-
sivector spaces, and denote their elements by lower case roman letters, e.g., a =
(A1, A2), A1, A2 ∈ M. Quasivector spaces are defined as follows [5]:

Definition 2. A quasivector space (over R), denoted (Q,+, R, ∗), is an Abelian group
(Q,+) with a mapping (multiplication by scalars) “∗”: R × Q −→ Q, such that for
a, b, c ∈ Q, α, β, γ ∈ R: γ ∗ (a + b) = γ ∗ a + γ ∗ b, α ∗ (β ∗ c) = (αβ) ∗ c, 1 ∗ a = a,
(α + β) ∗ c = α ∗ c + β ∗ c, if αβ � 0.

Proposition 1 [4]. Let (M,+, R, ∗) be a quasilinear space over R, and (Q,+), Q =
D(M), be the induced Abelian group. Let ∗ : R×Q −→ Q be multiplication by scalars
defined by (1). Then (Q,+, R, ∗) is a quasivector space over R.



S. Markov / On quasivector spaces of convex bodies 265

Let a be an element of a quasivector space (Q,+, R, ∗), a ∈ Q. The operator
¬a = (−1) ∗ a is called negation; in the literature it is usually denoted −a = (−1)

∗ a. We write a ¬ b = a + (¬b); note that a ¬ a = 0 may not generally hold. From
opp(a) + a = 0 we obtain ¬opp(a)¬ a = 0, that is ¬opp(a) = opp(¬a). We shall
use the notation a− = ¬opp(a) = opp(¬a); the latter operator is called dualization or
conjugation. The relations ¬opp(a) = opp(¬a) = a− imply opp(a) = ¬(a−) = (¬a)−,
shortly opp(a) = ¬a−. Thus, the symbolic notation ¬a− can be used instead of opp(a),
and, for a ∈ Q we can write a ¬ a− = 0, respectively ¬a− + a = 0. Many vector space
concepts, such as subspace, sum and direct sum, are trivially extended to quasivector
spaces. Rules for calculation in quasivector spaces are summarized in [5].

Example 1. For any integer k � 1 the set R
k of all k-tuples (α1, α2, . . . , αk), αi ∈ R,

with (α1, α2, . . . , αk) = (β1, β2, . . . , βk) whenever α1 = β1, α2 = β2, . . . , αk = βk ,
forms a quasivector space over R under the operations

(α1, α2, . . . , αk) + (β1, β2, . . . , βk) = (α1 + β1, α2 + β2, . . . , αk + βk),

γ ∗ (α1, α2, . . . , αk) = (|γ |α1, |γ |α2, . . . , |γ |αk

)
, γ ∈ R.

This quasivector space is denoted by S
k = (Rk,+, R, ∗). Negation in S

k is the
same as identity while the opposite operator is the same as conjugation:

opp(α1, α2, . . . , αk) = (α1, α2, . . . , αk)− = (−α1,−α2, . . . ,−αk). (2)

The direct sum V
l ⊕ S

k of the l-dimensional vector space V
l = (Rl,+, R, ·) and the

quasivector space S
k = (Rk,+, R, ∗) is a quasivector space.

Example 2. The system (K,+) of all convex bodies [8] in a real m-dimensional Euclid-
ean vector space E

m with addition: A + B = {a + b | a ∈ A, b ∈ B}, A,B ∈ K, is
an Abelian monoid with cancellation law having as a neutral element the origin “0”
of E

m. The system (K,+, R, ∗), where “∗” is multiplication by real scalars defined by:
γ ∗ A = {γ a | a ∈ A}, is a quasilinear space (of monoid structure), that is the following
four relations are satisfied:

(i) γ ∗ (A + B) = γ ∗ A + γ ∗ B,

(ii) α ∗ (β ∗ C) = (αβ) ∗ C,

(iii) 1 ∗ A = A,

(iv) (α + β) ∗ C = α ∗ C + β ∗ C, if αβ � 0 [5].

The monoid (K,+) induces a group of generalized convex bodies (D(K),+), cf. [1].
In [4] we investigate the space (D(K),+, R, ∗), where “∗” is defined by (1).

Definition 3. Q is a quasivector space. An element a ∈ Q with a ¬ a = 0 is called
linear. An element a ∈ Q with ¬ a = a is called centred or origin symmetric.
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Proposition 2. Assume that Q is a quasivector space. The subsets of linear and centred
elements Q′ = {a ∈ Q | a ¬ a = 0}, respectively Q′′ = {a ∈ Q | a = ¬a} form
subspaces of Q. The subspace Q′ is a vector space.

Definition 4. Assume that Q is a quasivector space. The space Q′ = {a ∈ Q | a ¬ a =
0} is called the linear subspace of Q and the space Q′′ = {a ∈ Q | a = ¬a} is called
the symmetric subspace or centred subspace of Q.

Theorem 1 [5]. For every quasivector space Q we have Q = Q′ ⊕ Q′′. More specifi-
cally, for every x ∈ Q we have x = x′ +x′′ = (x′; x′′) with unique x′ = (1/2)∗(x +x−)

∈ Q′, and x′′ = (1/2) ∗ (x ¬ x) ∈ Q′′.

Symmetric quasivector spaces and their relation to vector spaces. Let (Q,+, R, ∗)

be a (symmetric) quasivector space over R. For γ ∈ R denote σ (γ ) = {+, if γ �
0;−, if γ < 0} and c+ = c. Consider the operation “·” : R × Q → Q defined by

α · c = α ∗ cσ(α) =
{

α ∗ c, if α � 0,

α ∗ c−, if α < 0.
(3)

Theorem 2 [4,5]. Let (Q,+, R, ∗) be a symmetric quasivector space over R. Then
(Q,+, R, ·), with “·” defined by (3), is a vector space over R.

Note that for a centred, the element (−1) · a = (−1) ∗ a− = a− is the opposite to
a, that is a + (−1) · a = 0, respectively a + a− = 0.

Linear combinations. Assume that (S,+, R, ∗) is a symmetric quasivector space and
(S,+, R, ·) is the associated vector space according to theorem 2. We may transfer
vector space concepts from (S,+, R, ·), such as linear combination, linear dependence,
basis etc., to the original symmetric quasivector space (S,+, R, ∗). For example, let
c(1), c(2), · · · , c(k) be finitely many elements of S . The familiar linear combination f =∑k

i=1 αi · c(i) = α1 · c(1) + α2 · c(2) + · · · + αk · c(k), α1, α2, . . . , αk ∈ R, in the induced
vector space (S,+, R, ·), can be rewritten using (3) as

f = α1 ∗ c
(1)

σ (α1)
+ α2 ∗ c

(2)

σ (α2)
+ · · · + αk ∗ c

(k)

σ (αk)
. (4)

Thus (4) is a linear combination of c(1), c(2), . . . , c(k) ∈ S in the symmetric quasivector
space (S,+, R, ∗). Similarly, the concepts of spanned subspace, linear (in)dependency,
linear mapping, basis, dimension, etc. are defined, and the theory of vector spaces can
be reformulated in (S,+, R, ∗) [4,5].

Theorem 3 [5]. Any symmetric quasivector space over R, with a basis of k elements, is
isomorphic to S

k = (Rk,+, R, ∗).
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3. Computation with zonotopes in the plane

Our next aim is to concentrate to examples 1 and 2 having in mind a particular
class of convex bodies and the basic results of the above outlined theory. In what follows
we restrict ourselves to consideration of convex bodies in the Euclidean plane E

2, see
example 2.

Let (K,+, R, ∗) be a system of convex bodies in E
2, partially ordered by the inclu-

sion relation ⊆. Denote by 〈·, ·〉 the inner product and by | · | – the norm in E
2, and let U

be the unit ball, and S – the unit sphere in E
2. The norm in K is |A| = max{|a|: a ∈ A}.

The support function of A ∈ K is defined by h(A, u) = max{〈a, u〉: a ∈ A} [8,9]. The
excess from A to B is

excess(A,B) = inf{α > 0: A ⊆ B + α ∗ U},
and the Hausdorff distance is defined in K by

haus(A,B) = max
{
excess(A,B), excess(B,A)

}
.

The following relation exists between the Hausdorff distance in K and the uniform
distance for the support functions

haus(A,B) = max
{∣∣h(A, e) − h(B, e)

∣∣: e ∈ S
}
, A,B ∈ K. (5)

A centrally symmetric convex body with center at the origin is called centred con-
vex body (cf. [8, p. 383]). Every unit vector in E

2: e = (cos ϕ, sin ϕ) ∈ E
2, ϕ ∈ [0, π),

defines a centred segment ẽ ∈ K with endpoints −e and e:

ẽ = conv{−e, e} = {
λe | λ ∈ [−1, 1]},

where conv means the convex hull, see [8]. If v is a vector, then ṽ or ṽ means the
corresponding centred segment induced by the vector: ṽ = conv{−v, v}. Note that
v ∈ R

2, whereas ṽ is a convex body, that is ṽ ∈ K.
For ρ ∈ R denote s = ρe. Multiplication of a unit centred segment ẽ by a scalar

ρ ∈ R is:

s̃ = ρ ∗ ẽ = (ρe)̃ = conv{−s, s} = {
λρe | λ ∈ [−1, 1]}.

Multiplication of a centred (not necessarily unit) segment (ρe)˜ by a scalar γ ∈ R

satisfies:

γ ∗ (ρe)̃ = (
(γρ)e

)̃ = (γρ) ∗ ẽ.

Note that −1 ∗ s̃ = s̃; more generally, −ρ ∗ s̃ = ρ ∗ s̃ (for comparison, of course,
ρs 
= −ρs).

Minkowski sum of colinear segments is (ρ1e)˜+ (ρ2e)̃ = ((ρ1 + ρ2)e)̃. To present
Minkowski sum of two noncolinear segments, let us assume that 0 � ϕ1 < ϕ2 < π and
denote e(i) = (cos ϕi, sin ϕi), i = 1, 2. The points

s(1) = ρ1e
(1) = (ρ1 cos ϕ1, ρ1 sin ϕ1),

s(2) = ρ2e
(2) = (ρ2 cos ϕ2, ρ2 sin ϕ2),
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where ρ1, ρ2 ∈ R, define two noncolinear centred segments s̃(1), s̃(2) ∈ K. The
Minkowski sum s̃(1) + s̃(2) is a centred parallelogram p with vertices {t (1), t (2),
−t (1),−t (2)}, where t (1) = s(1) + s(2), t (2) = −s(1) + s(2). The perimeter of p =
conv{t (1), t (2),−t (1),−t (2)} is 4(ρ1 + ρ2) and the area of p is 4ρ1ρ2 sin(ϕ2 − ϕ1).

In the sequel we shall assume that we are given a mesh of k numbers ϕi in the
interval [0, π), such that

0 � ϕ1 < ϕ2 < · · · < ϕk < π. (6)

A system of numbers of the form (6) will be called regular. Every ϕi defines a unit
vector e(i) = (cos ϕi, sin ϕi), and respectively a unit segment: ẽ(i) = conv{−e(i), e(i)}.
The systems of vectors, respectively segments:

e(1), e(2), . . . , e(k) ∈ E
2, ẽ(1), ẽ(2), . . . , ẽ(k) ∈ K, (7)

will be also called regular; they are cyclically anticlockwise ordered.
In particular, we may assume an uniform system of points ϕi = π(i − 1)/k, i =

1, . . . , k; the respective systems {e(i)}k
i=1, {ẽ(i)}k

i=1 will be also called uniform.
For αi � 0 the vectors s(i) = αie

(i) = (αi cos ϕi, αi sin ϕi) induce centred segments
s̃(i) = αi ∗ ẽ(i) = (αie

(i))̃, i = 1, . . . , k. The positive combination of segments ẽ(i)

z =
k∑

i=1

s̃(i) =
k∑

i=1

αi ∗ ẽ(i), αi � 0, (8)

is a centred zonotope with 2k vertices: t (1), t (2), . . . , t (k), −t (1),−t (2), . . . ,−t (k) [8], that
is z = conv{t (1), t (2), . . . , t (k),−t (1),−t (2), . . . ,−t (k)}, where

t (1) =α1e
(1) + α2e

(2) + · · · + αk−1e
(k−1) + αke

(k),

t (2) =−α1e
(1) + α2e

(2) + · · · + αk−1e
(k−1) + αke

(k),

...

t (i) =−α1e
(1) − · · · − αi−1e

(i−1) + αie
(i) + · · · + αke

(k),

...

t (k) =−α1e
(1) − α2e

(2) + · · · − αk−1e
(k−1) + αke

(k).

(9)

The vertices t (1), t (2), . . . , t (k) given by (9) are lying in ciclic order anticlockwise
in a half-plane between the vectors t (1) and t (k) = −t (1) + 2αke

(k). The perimeter
of the zonotope z = ∑k

i=1 αi ∗ ẽ(i) is 4(α1 + α2 + · · · + αk) and the area of z is
4
∑k

i,j=1,j>i αjαi sin(ϕj − ϕi).

Two centred zonotopes b = ∑k
i=1 βi ∗ ẽ(i), c = ∑k

i=1 γi ∗ ẽ(i), βi � 0, γi � 0,
over same regular system {ẽ(i)}k

i=1, are added by b + c = ∑k
i=1 βi ∗ ẽ(i) + ∑k

i=1 γi ∗
ẽ(i) = ∑k

i=1(βi + γi) ∗ ẽ(i). Thus given a fixed regular system of centred unit segments
{ẽ(i)}k

i=1, the set of all zonotopes of the form (8):
∑k

i=1 αi ∗ ẽ(i), αi � 0, is closed
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under Minkowski addition and multiplication by scalars and forms a quasilinear space
(of monoid structure).

If we add two zonotopes b = ∑k
i=1 βi ∗ ũ(i), c = ∑l

i=1 γi ∗ ṽ(i), where {ũ(i)}k
i=1,

{ṽ(i)}l
i=1, are two distinct systems of centred unit segments, then we see from the ex-

pression for the sum: b + c = ∑k
i=1 βi ∗ ũ(i) + ∑l

i=1 γi ∗ ṽ(i) that the vertices of b + c

can be restored using (9); clearly the number of vertices of b + c equals (generally) the
sum k + l of the numbers of vertices of b and c, respectively. If we want to use a fixed
presentation of the zonotopes of the form (8), then we need to present (approximately)
all zonotopes using one and the same system of centred unit segments. We thus arrive to
an approximation problem to be considered next.

4. An approximation problem for zonotopes

Assume that a regular basic system of k � 2 mesh points (angles) {ϕi}k
i=1, is given

generating a basic system of centred unit segments

ẽ(1), ẽ(2), . . . , ẽ(k), e(i) = (cos ϕi, sin ϕi). (10)

Denote by Zk
p the set of all positive combinations of centred segments (10) in the form

(8): z = ∑k
i=1 εi ∗ ẽ(i), εi � 0. (The letter p in Zk

p stands for “positive” or “proper”.)
Assume that a (new) system of m � 1 mesh points {ψ(i)}m

i=1 is given such that 0 � ϕ1 �
ψ1 < ψ2 < · · · < ψm � ϕk < π . The system {ψ(i)}m

i=1 generates a regular system
{p̃(i)}m

i=1 of unit centred segments, distinct from the given system {ẽ(i)}k
i=1. Given the

numbers ρi � 0, i = 1, . . . , m, we want to approximate the zonotope w = ∑m
i=1 ρi ∗p̃(i)

by means of zonotopes from the class Zk
p, so that w ⊆ z.

Inclusion. Every vector p(i) = (cos ψi, sin ψi) can be presented as

p(i) = δi1e
(j) + δi2e

(j+1), j = j (i), i = 1, . . . , m, (11)

where e(j), e(j+1) are the nearest basic unit vectors enclosing p(i) with ϕj � ψi � ϕj+1

and δi1, δi2 are some nonnegative coefficients. Denote d(i) = δi1 ∗ ẽ(j) + δi2 ∗ ẽ(j+1),
i = 1, . . . , m. The zonotope d(i) is a centred parallelogram, which contains the segment
p̃(i). Using that the zonotope d(i) contains the segment p̃(i), p̃(i) ⊆ d(i), i = 1, . . . , m,
we obtain

w =
m∑

i=1

ρi ∗ p̃(i) ⊆
m∑

i=1

ρi ∗ d(i) =
m∑

i=1

ρi ∗ (
δi1 ∗ ẽ(j) + δi2 ∗ ẽ(j+1)

)

=
m∑

i=1

(
ρiδi1 ∗ ẽ(j) + ρiδi2 ∗ ẽ(j+1)

) =
k∑

i=1

εi ∗ ẽ(i) = z (12)

with some εi � 0 that can be effectively computed. It follows from (12) that the zono-
tope z satisfies the inclusion w ⊆ z. To proof that z approximates the zonotope w we
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shall compute the difference in the areas of the two zonotopes and shall show that this
difference tends to zero with the refinement of the basic mesh.

B. Approximation. In order to discuss the approximation part we need the following
lemmas.

Lemma 1. The area of the centred zonotope d(i) = δi1 ∗ ẽ(j) + δi2 ∗ ẽ(j+1), approx-
imating the segment p̃(i), does not exceed 2 tan((ϕ(j+1) − ϕ(j))/2), respectively for the
uniform case: tan(π/(2k)).

Lemma 2. For a centred zonotope z, the area S(z) of z satisfies: S(ρ ∗ z) = ρ2S(z),
ρ � 0.

Lemma 3. Assume that p and q are two different vectors from the system {p(i)}m
i=1.

Assume that

p = γ1e
(i) + γ2e

(i+1),

q = δ1e
(j) + δ2e

(j+1),

where e(i), e(i+1) are the nearest unit vectors from (10), enclosing p and e(j), e(j+1) are
the nearest unit vectors from (10), enclosing q, and γ1, γ2, δ1, δ2 are some nonnegative
coefficients. Denote

u = γ1 ∗ ẽ(i) + γ2 ∗ ẽ(i+1),

v = δ1 ∗ ẽ(j) + δ2 ∗ ẽ(j+1).

Then the following relation for the area S of the zonotopes u, v, u + v and p̃ + q̃

takes place:

S(u + v) = S(u) + S(v) + S(p̃ + q̃). (13)

More generally we have

S(α ∗ u + β ∗ v) = S(α ∗ u) + S(β ∗ v) + S(α ∗ p̃ + β ∗ q̃). (14)

where α, β are nonnegative numbers.

Using the construction of z one can obtain better approximation by subsequent
refinement of the basic mesh system. By a mesh refinement we mean the construction
of an infinite sequence of regular basic mesh systems such that the distance between the
mesh points (angles) tends to zero. The simplest such mesh system is the uniform one
with ϕ

(k)
i = π(i − 1)/k, i = 1, . . . , k, where k goes to infinity (say, as k = 2t ).

It can be noticed from (12) that the approximating zonotope zk = ∑k
i=1 εi ∗ ẽ(i)

has not more that 2m summands, that is k � 2m, where m is a fixed integer. Thus the
approximating zonotope zk is a finite sum of (at most) m summands z = ∑m

i=1 ρi ∗ d(i)

and each of these summands ρi ∗ d(i) tends to the corresponding summand ρi ∗ p̃(i) in
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the sum w = ∑m
i=1 ρi ∗ p̃(i). Hence the sequence of zonotopes zk tends in Hausdorff

sense to the given zonotope w. We thus arrived the following:

Theorem 4. Given a centred zonotope w, there exists a sequence of zonotopes zk tend-
ing to w in Hausdorff sense such that w ⊆ zk. For the case of an uniform mesh
ẽ(1), . . . , ẽ(k) we obtain S(zk) − S(w) = O(1/k).

Proof. According to lemma 1 the area of the zonotope u = γ1 ∗ ẽ(i) + γ2 ∗ ẽ(i+1) does
not exceed 2 tan(ϕi+1 −ϕi)/2, which can be used to compute the area of zk, and compare
it to the area of w ⊆ z. Using lemmas 2, 3 we obtain

S(zk) − S(w) = 2
m∑

i=1

ρ2
i tan

ϕi+1 − ϕi

2
.

In the case of uniform mesh ϕi+1 − ϕi = π/k we obtain

S(zk) − S(w) = 2 tan
π

2k

m∑
i=1

ρ2
i ,

which proves the proposition. �

From (12) one can compute the vertices of the zonotope z by means of (9) or the
supporting halfplanes.

It can be shown that the above algorithm produces an optimal approximation as
regard to the Hausdorff metric. This follows from the fact that every single segment
(11): p(i) = δi1e

(j) + δi2e
(j+1) has been optimally approximated by the parallelogram

d(i) = δi1 ∗ ẽ(j) + δi2 ∗ ẽ(j+1). Note that the area of the zonotope εi1 ∗ ẽ(j) + εi2 ∗ ẽ(j+1)

is 4εi1εi2 sin(ϕj+1 − ϕj).
Relations (11), (12) suggest the formulation of an algorithm leading to the con-

struction of the zonotope z giving an outer approximation of w. An algorithm using
a regular uniform mesh of centred segments in E

2 has been realized in the computer
algebra systems Matlab and Mathematica.

The method of support functions

Let us compare our method with a corresponding method based on support func-
tions. The support function of a set A ∈ E

2, namely h(A;u) = maxx∈A〈x, u〉 is well
defined by its values on the unit circle S , that is for u = (cos θ, sin θ) ∈ S . Let us calcu-
late h(A;u) for a zonotope A. The simplest zonotope is the centred unit segment ẽ with
e(ϕ) = (cos ϕ, sin ϕ). We have h(ẽ;u) = h(ẽ(ϕ);u) = | cos ϕ cos θ + sin ϕ sin θ | =
| cos(θ − ϕ)|.

Using this expression we can write down the support function of the zonotope
z = ∑k

i=1 εi ∗ ẽ(i), where e(i) = (cos ϕi, sin ϕi), i = 1, . . . , k, 0 � ϕ1 � · · · �
ϕm < π . We have h(z, θ) = maxx∈ẽ〈x, u〉 = ∑k

i=1 εi |〈e(i), ·〉| = ∑k
i=1 εih(ẽ(i); θ) =∑k

i=1 εi| cos(θ − ϕi)|.
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The above approximation problem can be stated in terms of support functions as
follows. Given some ψi, i = 1, . . . , m, 0 � ψ1 � · · · � ψm < π , we want to
approximate from above in the interval [0, π ] the function w(θ) = ∑m

i=1 εi| cos(θ −ψi)|
by means of a function of the form zk(θ) = ∑k

i=1 εi | cos(θ −ϕi)|, that is we need to find
the ε’s in zk so that zk � w and zk approximates w. In view of (5) the latter means that
maxθ∈[0,π) |w(θ) − zk(θ)| has to be minimized (w.r.t. the ε’s).

Generalized zonotopes

As discussed in section 2 we can introduce new improper elements in the set of
centred zonotopes on E

2 of the form (8), for a fixed k, so that this set becomes a quasi-
vector space (under Minkowski addition and multiplication by scalar). The obvious way
to do this is by extending the positive combination (8) in the spirit of (4), that is, to fix
a regular system of k � 2 centred segments (10) and to consider the set Zk = D(Zk

p) of
all linear combinations of centred segments in the form:

z =
k∑

i=1

αi · ẽ(i) =
k∑

i=1

αi ∗ ẽ
(i)

σ (αi)
, (α1, α2, . . . , αk) ∈ R

k. (15)

The elements of Zk are called generalized zonotopes. Now, according to theorem 3,
the space D(Zk) is a symmetric quasivector space isomorphic to the space S

k =
(Rk,+, R, ∗) from example 1. According to theorem 2 the latter space is equivalent
to the vector space V

k. We thus see that the vector space V
k with the familiar addition

of vectors and multiplication by scalars is equivalent to the symmetric quasivector space
of generalized centred zonotopes of the form (15). In this manner computations with
centred zonotopes are reduced to computations in a familiar vector space.

The opposite element to ẽ is the improper segment ẽ−, such that ẽ + ẽ− = 0.
The element ẽ− can be interpreted (visualized) as the set of all points on the real line R

supporting the segment (that is, passing through the vectors e,−e) without the points of
the segment ẽ, i.e. ẽ− = R \ ẽ. Another interpretation (related to concepts like normals)
uses directions: ẽ has a direction from −e to e, whereas ẽ− has an opposite direction
(from e to −e).

According to theorems 2, 3 the space of generalized centred segments over the
real line R is equivalent to a vector space with a linear multiplication “·” defined by
αs̃ = α · s̃ = α ∗ s̃σ (α), α ∈ R. In particular, for the opposite segment of s̃ we have
(−1) · s̃ = (−1) ∗ s̃− = s̃−. Using the usual notation for opposite in a linear space
we may write −s̃ = (−1) · s̃ for s̃−. Then we may write expressions like s̃ − s̃ = 0,
αs̃ = α · s̃, etc., but we should be careful with the meaning of such expressions, e.g.,
s̃ − s̃ = s̃ + s̃−, αs̃ = α ∗ s̃σ (α), respectively. Furthermore, one can assume that an
improper segment is generated by a vector (cos ϕ, sin ϕ) with ϕ ∈ [π, 2π). Then we
could write, e.g., −ẽ = ẽ− = (−e)̃.

A (generalized) zonotope (15) can be identified with the vector (α1, α2, . . . , αk) ∈
R

k. Every term αi · ẽ(i) in (15) having a negative coefficient αi < 0 is improper, in this
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case: αi · ẽ(i) = αi ∗ ẽ
(i)

σ (αi )
= αi ∗ ẽ

(i)
− . A zonotope is improper if at least one αi is

negative. Recall that the set of all points x satisfying the inequalities:

〈
x − t (i), s(i)∗〉 � 0,

〈
x + t (i),−s(i)∗〉 � 0, (16)

for some fixed i = 1, . . . , k is a strip in E
2. The zonotope z is an intersection of all

k strips (16) with i = 1, . . . , k. A generalized zonotope (15) can be visualized as an
intersection of strips that can be proper or improper. An improper strip corresponding
to a negative αi , respectively to an improper segment αiẽ

(i) can be visualized as the
complement to the respective (proper) strip in E

2; note that the direction of the nor-
mals s̃(i) = αiẽ

(i) in (16) depends on the sign of αi . Another possible way to vizualize
generalized zonotopes is to endow the boundary of the corresponding proper zonotope
with arrows pointing outward or inward depending on the sign of the corresponding αi .
A similar visualization has been suggested in [1].

By now we have considered only centred (generalized) zonotopes. The consider-
ation of zonotopes that are not centred in the origin presents no problem according to
theorem 1, as they are sums of vectors and centred generalized zonotopes, cf. example 1.

5. Concluding remarks

It has been widely recognized that zonotopes are a suitable tool for bounding re-
gions of uncertainty. However, using zonotopes generated by arbitrary segments makes
computations extremely complex due to large (potentially infinite) number of parame-
ters. Therefore, it is desirable to consider zonotopes from a finite-parametric family,
with a fixed number of parameters; such a natural family of regular basic vectors has
been used in the paper. Fixing a simple family of zonotopes, then the natural problem of
approximating all zonotopes by means of zonotopes from this family arrises. We then
suggest an algorithm producing approximate enclosure and show that this enclosure is
optimal with respect to the Hausdorff distance.

In the present study of the presentation and algebraic computation with zonotopes
we have been guided by the theory of quasivector spaces. As every quasivector space is
a direct sum of a linear subspace and a symmetric quasivector subspace we concentrate
on the space of centrally symmetric zonotopes centred at the origin (centred zonotopes)
which can be represented as Minkowskian sums of centred segments. Spaces of such
zonotopes can be naturally embedded in symmetric quasivector spaces with group struc-
ture. We show how this can be done and give an idea how improper elements can be
represented and visualized. Our approach is alternative to the approach of support func-
tions, extensively used in the literature on convex bodies. The space of extended (gen-
eralized, differences of) support functions is a quasivector space, and we can calculate
with generalized convex bodies directly in the same way as we do with extended sup-
port functions [4]. Moreover, in the finite-dimensional case computations are reduced to
computations in a vector space.
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