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Abstract It is proved that (set-theoretic) interval multiplication is inverse inclusion
isotone. The centered outward interval multiplication (co-multiplication)
is studied in some detail with respect to inclusion isotonicity. To a
system of linear interval algebraic equations we associate a system involving
co-multiplication. The latter reduces to two real linear systems of the
same size for the midpoint-radius coordinates of the unknown intervals.
We show that under certain assumptions these real linear systems produce
an inner inclusion for the tolerance solution of the original interval
system.

1. Introduction

It is well-known that self-validating methods for linear systems demand
a consideration of all errors in the coefficients of the system including
round-off errors. A possible approach to treat linear systems with error
control is to formulate the system as a linear interval system, that is
to consider the system together with intervals corresponding to the
errors in the respective coefficients of the system and to make use of
interval arithmetic [11]. The latter is an efficient tool for the construction
of self-validating methods due to the inclusion isotonicity of interval-
arithmetic operations. However, the application of interval arithmetic
to a verified solution of linear interval equations is intricate, because
interval arithmetic does not permit a representation by coordinates so
that interval operations, resp. interval algebraic problems, can not be
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generally reduced into real problems to be solved separately for each
coordinate [6].

In order to treat interval algebraic equations involving multiplication
of intervals we make use of a special “centered outward” multiplication of
intervals. The centered outward interval multiplication produces outer
enclosure for the familiar (set-theoretic) interval product. Throughout
the paper we use midpoint-radius representation of intervals, which is
a natural representation from both an algebraic and practical point of

view [2], [3], [11]-[13].

Interval addition and multiplication by scalars. Denote by
R = (R, +, -, <) the ordered field of reals and by R™ the n-dimensional
real vector space. For a = (ay,az, ...,a,), b= (b1,bs,...,b,) € R", the
partial order “<” is given component-wise by a < b <= a; < b; for all
2_1, wn. Ford a”" € R", " > 0,theset A={z e R" | d —d" <
v <a 4+ a”} = (a’;d") is an (n-dimensional) interval (or boz) in R™; o’
is the midpoint (center) of A and a” > 0 is the radius of A. The set of

all n-dimensional intervals in R™ is denoted [(R)".

Addition of two intervals A, B € I(R)"is defined by A+ B ={c|c=
a+b, a€ A be B}, here a,b,c € R". Multiplication of an interval
B € I(R)" by a real scalar o« € R is defined by ax B={c|c=ab, b€
B}, b,c € R". Negation “=" is —A = (=1) x A, A € I(R)". We have
—(y*xA)= (- x(yxA) = (—y)x*A=vyx(—A)fory € Rand A € I(R)™
Subtractionis A— B = A+ (—B). An interval A € I(R)" is symmetric,
if A= —A, and degenerate, if A — A = 0. In midpoint-radius form we
have

(d;a") + (b36") = (d +V;d" +b"), (1)
ax(¥50") = (abf |04|b") (2)
—(d5a") = (-a ) (3)

(a/; a//) _ (b/; b”) (a/ b”) (4)

Formulae (1)—(4) can be rewritten component-wise in the n-dimensional

case, for instance (3) can be written as —(a};af) = (—di;df), ...
(an,an) = (—al;al), or as:
_(allv- 7an7a17' .761;;) = (_a/h"'7_a;1;a/1/7“‘7a;1/)' (5)

Interval multiplication. The set-theoretic multiplication of two
intervals A, B € I(R) is

AxB={{n]&€ A, ne B} (6)
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Assume A = (d;a"), B = (V';b") € I(R), are such that ¢’ —a” > 0,
b' —b" >0, then [11]:

AxB = {eR|(a' —d")(t/ V") <& < (a'+ad") (0 +07)}
(a/b/‘l—a//b//' b/a//‘l—a/b//).

Denote by I(R)* the set of all intervals which do not contain zero
as interior point: I(R)* = {(¢;a¢”) € I(R) | a” < |d’|}. Interval
multiplication (6) in midpoint-radius form for the case A, B € I(R)*
can be written:

' ron (a/b/‘l—a//b//; |b/|a//_|_ |a/|b//)7 lf a/b/ 2 07

sy @ = { T e e s O

Using 0 : R — A = {4, —} defined by:

_ )+ ity >0,
on={ R0 ®)
and the notation oca = {a,0 = +; —a,0 = —}, formula (7) obtains the
form:
(a/; a//) * (b/; b//) — (a/b/ _I_ U(a/b/)a//b//; |b/|a// _I_ |(1/|b//)7 (9)

whenever a” < |d|, b < |b/|. Interval multiplication by scalars (2):
ax (b;0") = (ab'; |a|b”) is a special case of (7), resp. (9), considering «
as a degenerate interval o = (a;0) € I(R).

When (at least) one multiplier contains zero as an interior point (6)
admits simple midpoint-radius representation. If A = (a’;a”) is such
that «” > |a|, then we have:

(a/; a//) * (b/; b//) — (a/b/ _I_ O_(b/)a/b//; |b/|a// _I_ a//b//)
= (d'(t' + o (b)0"); a" (]t + 7)) (10)
= (o)) + 8" (] + 8),
under the condition that either i) " < |b/|, or ii) 8" > |V/|, |(A)| >
|22(B)|, where 3(A) = a’/d’, ' # 0, is the relative extent (rex) function
introduced by Kulpa [2]. Using multiplication by scalars (10) can be
written
(a';a"y + (V50" = (6| +0") x (o(0')d; o). (11)
In the special case of symmetric intervals we have (0;a”) * (0;0"”) =
(0;a"b").
Inclusion of intervals is expressed in midpoint-radius form by [5],
[12]:
ACB<= |t -d| <V -d", A BelR). (12)
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Inclusion isotonicity of addition: A C B <= A+ C C B4 is trivially
demostrated in midpoint-radius coordinates. Indeed, in terms of (12)
A4+ C CB+Cmeans [0+ — (d+)] <"+ " — (" + ") which is
equivalent to [0/ — a'| < b" —d”, that is A C B.

It is also easy to observe isotonicity of multiplication by real scalars:

for A;B€ I(R),ceR,c#0,
ACB+=c+ACcx*B. (13)

Indeed, for ¢ € R fixed c¢x A C ¢* B means in terms of (12): |cb’ — ca’| <
lc|b” — |c|a”, which for ¢ # 0 is equivalent to |0’ — a'| < b" — a”.
Using (6) and (13) it is easy to see that for A, B,C € I(R),

ACB= Cx+xACCx*B. (14)

2. Inverse Inclusion Isotonicity of Interval
Multiplication

To prove inverse inclusion isotonicity of interval multiplication, that
is (14) in the inverse direction, we need the following

Proposition 1 If A, B € I(R)*, C € I(R)*\ {0}, C'x A C C B, then
o(a)y=a(l).

Proof. From the assumptions we have o(c’a’) = o(c'b’), which implies

o(a)=a(l). O
Theorem 1 If A, B,C' € I(R), 0 ¢ C, then

C+ACCxB= ACB. (15)

Proof. By assumption ¢/ < |¢/|. 1) We first consider the case a” <
|a'], ¥ < |b'|. Using Proposition 1 we see that the inclusion C'xA C C'«xB
implies o(a’) = o(b’) = A. In terms of (12) C'+ A C C' x B is equivalent
to [(C'+ B) — (C'x A)| < (C'* B)" — (C+ A)". Using (9), we obtain

consecutively the equivalent inequalities

|blcl—|—/\U(C/)b”C”— ad — /\U(C/)a”C”| < |b/|C”—|— |Cl|b”— |a/|C//_ |C/|a//7
|(b/ _ a/)cl + /\U(C/) (b// _ a//)C//| < (|b/| _ |a/|)C//_|_ |Cl|(b// _ a//)7
|/\(b/ . a/)|cl| + (b// . a//)cu| < /\(b/ . a/)cu + |Cl|(b” . a//)‘
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Equivalently, for ¢ € {+, —}, we have:

AV — )|+ @ —a)) < AV —d) + |d|(b" - "),
8/\(()/ . a/)|cl| . /\(b/ . a’)c" < |C/|(b” . a//) . 8(()” . a//)C//7
eAV = a)(Id| —ed)y < (" -d") (] - ).

Using || — ec” > 0, we obtain eA(b — a’) < 0" —a”, that is [ — a/| <

b" — a”, which, according to (12) is equivalent to A C B.
2) Consider next the case 0 € A, 0 € B, ' # 0, V' # 0. Assume

#(A) > x(B) (otherwise, exchange A and B). Using (11) we have
(a5a") # (¢5") = (|| + ) x (al)a’s a”), (V:6") x (5e”) = (1] +
M x (o()b'; b"). The inclusion C'x A C C'x B means, in terms of (12),

/

[(CxB) —(C'xA)| < (CxB)"'—=(CxA)" i.e. (|d|4+")|o()b —o(c)d'| <
('l + ") (b" — ), which is equivalent to |0 — a/| < b — a”, that is to
A C B. The case ' = 0 and/or b’ = 0 is treated similarly.

3) Consider finally the “mixed” case when one of the intervals A, B
includes 0, the other does not. The case 0 € A, 0 ¢ B, is not possible;
indeed, then we have the relations 0 € C'x A, 0 ¢ C'x B, which contradict
the assumption C'x A CC+ B. Let 0 ¢ A, 0 € B, then [(C'x B)' — (C %
A)' < (C*B)'" — (C+A)" becomes

|(|Cl| + C”)U(C/)b/ —dd — O'(QIC/)QHC”| < (|Cl| + C//)b// _ |a’|c" _ |Cl|a”,
8((|Cl| + C”)U(C/)b/ —dd — O'(LZIC/)Q”C”) < (|Cl| + C//)b// _ |a’|c" _ |Cl|a”.

If ¢ = —o(a’c’) then the above is equivalent to —o(a’)(|¢/| + ¢')(b' —

a’) < (|| 4 ) (" = a"), or

—o(d )V —d') <V —d". (16)

If ¢ = 0(a’¢’) then we obtain:

O'(a/)(|Cl| + C”)b/ _ |a/||cl| —a"
o(a) (|| + ) = |d[|] + |a’|”

< (Il + N = || — |)d”,
S (|C/| _I_ C//)b// _ |Cl|a// _I_ a//C//‘
Adding to the last inequality the inequality 2c¢”a” < 2¢”|d/|, i. e
—2"a'| < —=2c"a”, we obtain

o () (|| + ¢ — ||| = "|d| < (|¢] + )" — ||a” — "a”,
which is equivalent to o(a') (|| + ") (V) — ') < (|| + ") (0" — @), that

is to o(a')(b' — ') < b — a”. The latter, combined with (16), can be
summarized as |0’ — o'| < b — ", that is A C B. O



The proof of (15) using midpoint-radius coordinates is based on equivalent

inequalities, hence it can also serve as a proof of (14) for the case 0 ¢ C.
The conditions of Theorem 1 can be relaxed by replacing the assumption
0 ¢ C' by the less restrictive assumption C' € I(R)*\ {0}.

Proposition 2 Assume that A = (a';a"”), B = (b';8") € I(R), k € R.
Then the following two assertions are equivalent:

i) | —d| < kO —d"), k> 1;

ii) ACB+(0;r), r=(k=1)0"-d") >0.

Proof. According to (12) the inclusion A C B 4 (0;r) = (450" + 1),
r=(k—-1)(" —d") > 0, is equivalent to [0/ —d'| < V' +r —a' =
b+ (k . 1)(()"— a//) _ " = k(b” . a//)‘ 0

Remark. Proposition 2 is a generalization of (12) in the sense that
the latter is obtained from Proposition 2 for k = 1, resp. r = 0.

Consider the algebraic solution of the equation A x X = B. Assume
A, B € I(R)*, A # 0, then it follows that X € I(R)* as well. Using
midpoint-radius representation and (9) we obtain the following equations
for the midpoint-radius coordinates of X:

da’ +o(d)o(a)d2" =V, (17)
||+ |d]a" = b, (18)

Note that (17)—(18) is a not a linear system for 2, 2”; indeed, we have
to know the sign of 2’ in advance to consider this system as a linear one.
It is easy to determine o(a’) in the case of one equation, but this may
be tedious in the case of many equations. Another complication is that
equations (17)—(18) are coupled. Similarly, a system of n linear interval
equations leads to a system of 2n equations for the coordinates of the
algebraic solution. This shows that the coordinate systems corresponding
to problems involving interval multiplication (of nondegenerate intervals)
may be difficult to solve. To simplify the solution of such problems a
special “centered outward” multiplication of intervals can be introduced,
which produces an outward approximation of the set-theoretic interval
multiplication and leads to simpler coordinate problems.

3. Centered Outward Interval Multiplication
Consider the following operation in I(R):
aob=(a';a")o (V';0") = (V5 |d'|b" + |V'|a" + a"b"), (19)

to be called centered outward multiplication of (proper) intervals, briefly:
co-multiplication. Note that co-multiplication by real scalars (degenerate
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intervals: ¢’ = 0 or/and b” = 0) coincides with the set-theoretic interval
multiplication by scalars, oo (0';8"”) = o+ (b';6"). Using the absolute
value of a € I(R), defined as |a| = |d/| + ", we can write (19) as:
aob=(a'l'; |alb” + |b'|a”) = (a'b'; |bla" + |a'|b").

The co-multiplication (19) produces generally wider results than the
set-theoretic multiplication (6), as the following proposition shows

Proposition 3 For (a’;a”), (b;0") € I(R) we have
(a';a")y * (0'50") C (a';5a") o (b;0"). (20)

Proof. Assume first that (a’;a”), (b';0") € I(R)*, that is the intervals
do not contain zero as interior point. To prove inclusion (20) we apply
formulae (12), (9) and (19) to obtain the obvious relation |a"b"| < a”b",
showing that (20) is true. Assume now that the first interval contains
zero as an interior point, ¢” > |a’[. Applying formulae (12), (10) and
(19) we obtain the true relation |a'b”| < |a/|b”. This proves (20). a

Example 1.
(2;0.1) * (4;0.04) = (8.004;0.480) = [7.524; 8.484],
(2;0.1) 0 (4;0.04) = (8.000; 0.484) = [7.516; 8.484].

Example 2.
(100;1) % (100; 1) = (10001;200) = [9801; 10201],
(100;1) o (100; 1) = (10000;201) = [9799; 10201].

Proposition 4 Let A = (a’;ad"), 0 ¢ A, B = (b';0"), |»(A4)] < |#(B)|.
Then AoY = B has a unique algebraic solution'Y = (y';y"), given by
y/ = b//a/7
y// — (b//_a//|b//a/|)/|a|‘
If X is a solution to Ax X = B, thenY C X.

Proof. The equation A oY = B can be written in midpoint-radius
form as (a'y';|aly” + |y'|a”) = (b';b"), hence:
a/y/ — b/7
|a|y//_|_ |y/|a// — b//‘

Using a’ # 0, we can solve the first equation and replace the solution y’
in the second one to obtain:

y/ — b//a/
1
|a|y// — b//—a//|b//a/|.



8

Using |a| = |a’| + a” # 0, we can solve the second equation. Hence the
solution of AoY = Bisy =¥b/d, y' = (V" — a"|b'/d|)/|al. 1t is easy
to check that ” > 0 and that 0 ¢ Y. To see the latter, we calculate:
Y1) = (VI8 — ) (] + ) < (o f0 — @)/l = B/ -
a"/|a’| < V"))V = »(B) < t7!. Let X be a solution to A * X = B.
From AxY C AoY = A x X, using (15), we obtain ¥ C X. O

Proposition 5 For A, B,C € I(R)*, we have

ACB= AoC CBoC. (21)

Proof. We have to prove that A C B, that is |0/ — d'| < V" — d”,
implies AoC' C Bo (. According to (12) the latter is equivalent to the
following inequalities:

|b/C/ _ a/C/| < |b/|C” + |Cl|b” + b — |a/|C// _ |C/|a// _ a//C//7
(0" = a)d| < ([ = la'e" + (I + ") (b7 — ),
8(()/— a/)|cl| < /\(b/— a/)c"—l— (|C/| —I—C”)(b”— a//)7
e(®' = a)(|] = Aec”) < (e + (" - a”), (22)

where A = o(a’) = o(V)), ¢ € {+,—}. By assumption ¢’ < ||, hence
0 < |d|=Aec”. This and |b'—a’| < b"—a” imply (22), which is equivalent
to AoC' C BoC'. This proves (21). a

It is worth to note that Theorem 1 is not true if the set-theoretic
interval multiplication “*” is replaced by the interval co-multiplication
“0”: Ao(' C Bo( does not imply A C B. This can be demonstrated

by the following example.

Example 3. Assume A = (1;1) = [0,2], B = C = (3;2) = [1,5].
Then, Ao C = (3;7) = [-4,10], Bo C = (9;16) = [-7,25]. We have
AoC C Bo(, but A C B does not hold.

The next proposition shows that if we “slightly” expand B, then an
inclusion holds.

Proposition 6 Assume that A = (d/;d"), B = (V;0"), C = (d;") €
I(R),0¢ C. Then

CoACCoB= ACB+(0;r),

wherein r = (k—1)(b" —a") >0, k> (|| + ") /(|| = ") > 1.
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Proof. According to (12) the inclusion C'o A C C'o B is equivalent to

|b/C/ _ a/C/| < |b/|C” + |Cl|b// + e — |a/|C// _ |C/|a// —d',
|C/(b/ _ a/)| < (|b/| _ |a/|)C//_|_ |Cl|(b” _ a//) + (b” _ a//)C//7
U —a| < = e (] B - a”),
(1= =l < (e]+ )"~ a”).

Thus we obtain |b'—a'| < k(b"—a"), with k+ (|| +") /(|| —¢") > 1.
Using Proposition 2 we see that A C B4 (0;r), where r = (k—1) (0" —
@) 20, k> (] + (1] — ) > 1. .

The co-multiplication (19) has been proposed in [12]; independently
it has been introduced and practically implemented in [11] and has been
studied in [4] with respect to distributivity. As noted in [4] the operation
(19) is a special case of the complex disc multiplication introduced in
[1]. A software implementation of the co-multiplication is reported in
[9]; it has been shown that overestimation of co-multiplication satisfies

(A% B)"/(Ao B)" < 1.5 and is globally limited [10].

4. Linear Interval Systems

In the previous sections we use upper case letters to denote intervals;
in the sequel we use lower case letters for intervals and interval vectors
and upper case letters for interval matrices. Assume that C' = (¢;;) €
I(R)™*"™ is a square matrix of intervals and a = (a;) € I(R)" is an
interval vector. Denote C'xa = {3°7_, c;j*a;}, € I(R)", resp. Coa =
Do ejoatf, € I(R)". Using (20) we see that

CxaCCoa, CelIR)™", aeclR)"

We write C' = (C";C"), with ¢7 = (c};) € R™™, C" = (cf;) € R™™,
ci> > 0, similarly a = (a’;a"), «’ € R", " € R", a" > 0.

The absolute value of an intervalc € I(R)is |c| = |¢'|4¢”. Correspondingly,

we have for the interval matrix C' € I(R)"*", |C| = (|ei;]) = |C'| + C”,
and for the interval vector ¢ € I(R)", |c| = (|¢5]) = || + .

Recall that C' € I(R)"*" is a regular interval matrix, if every real
matrix C' € R™", C' € C, is nonsingular [5]; C' € I(R)"*"is a nonnegative
interval matrix, if every real matrix C' € R"*", C' € C, is nonnegative;
C € I(R)™™" is an inverse nonnegative interval matrix, if every real

matrix ¢ € R, C € (, is inverse nonnegative (that is C~! is
nonnegative).

Algebraic solutions. Consider a linear interval (n X n)-system of
the form

Axa=0b, (23)
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where A = (a;;) € I(R)"*"is a regular matrix of intervals and b € I(R)"
is an interval vector. A vector 2 € I(R)" satisfying (23) is called algebraic
solution to (23), see, e. g. [7]-[8].

As mentioned at the end of Section 2, the interval system (23) leads to
a system of 2n algebraic equations for the coordinates of &, which is not
linear. Using the method for one equation, see Proposition 5, consider
the associated system

Aoy =0, (24)

obtained from (23) by replacing all interval multiplications “«” by co-

multiplications “o” defined by (19). Denoting A = (A’; A”), b = (b'; "),
y = (y';y"), we have in matrix notation

Aoy — (14/y/7 |Al|y//_|_A//|y/| _I_A//y//) — (14/y/7 |14|y//_|_14//|y/|)7 (25)

using |A| = |A'| + A”. From (24), (25) we obtain the following real
system of 2n equations for the midpoint-radius coordinates of y:

Ay =V, (26)
A" = b= A"y, 27)

System (26)—(27) can be solved in two steps: first solve system (26)
using that A" is nonsingular (A is assumed regular) to obtain a solution
y' = (A")~', then substitute y’ in (27) to obtain the system

ALy = B = A"|(A) 7). (25)

To solve the latter system, we must assume that |A] = |A'] + A" is
nonsingular, then

y// — |A|—1(b// _ A”|(A/)_1b/|).

If y” > 0, then the right-hand side of (28) is necessarily nonnegative,
d="b"—A"|(A)~1'| > 0. The latter condition can be written in the
form 0" > A”|(A’)~'¥/|, showing that the right-hand side vector b is
“sufficiently wide”. The situation is analogous to the one in the one-
dimensional case, see Proposition 5, where we assume |s>(B)| > |s(A)].
If " > 0, that is |A|7'd > 0, then y = (y';¢") is a unique (algebraic)
solution to (24). We proved the following

Proposition 7 Assume that the interval matriz A € I(R)™*" is regular
and that the matriz |A| is nonsingular. Assume also |A|~*d > 0, where
d =" — A"|(AY7YY|. Then there exists an interval vector y € I(R)",

satisfying problem (24).
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Tolerance solution. The tolerance solution to (23) is the set: {n €
R™ | A+ n C b}. The (algebraic) solution to problem (24) (whenever
existing) is connected with the tolerance solution to system (23). To
demonstrate this, assume that y € I(R)" is a solution to (24). From
Axy C Aoy = b we see that y satisfies the inclusion A *xy C b. As any
real n € y satisfies Axn C b, we see that the interval vector y is included
in the tolerance solution {n € R™ | Axn C b} to (23). On the base of
the above arguments we can formulate:

Theorem 2 Assume that the interval matric A € I(R)**" is regular
and |A| is nonsingular. Assume also that |A|71(b" — A"|(A") =) > 0.
Then the interval vector y € 1(R)", satisfying (according to Proposition
7) problem (24), is an inner inclusion of the tolerance solution to (23).

The special case of a real matrix. Consider the case when the
matrix A is a real matrix (all entries in A are degenerate intervals).
Then the matrix A” is the null matrix and for z = (2/;2") € I(R)" we
have Ax 2z = Aox = (Aa';|A|2"). Systems (26)-(27) obtain the simple
form

Azl =V, (29)
|A] 2" = b (30)

Assuming that the real matrices A and |A| are nonsingular, we obtain
for the solution of (29)—(30): 2’ = A7, 2" = |A|~'b". We must assume
|A|710” > 0, so that 2”7 > 0. We thus obtain the following corollary:

Corollary. Given system (23), such that A € R"*" b = (b',0") €
I(R)", assume that the real matrices A and |A| are nonsingular and
|A|718" > 0. Then there exists an unique interval solution z to (23).

Concluding remarks. Throughout the work we systematically use
the properties of the midpoint-radius presentation of intervals, interval
vectors and interval matrices. We prove inverse isotonicity of (set-
theoretic) interval multiplication and show that co-multiplication is not
inverse inclusion isotone.

We demonstrate that a linear system involving intervals and interval
co-multiplication can be reduced to real linear systems for the midpoint-
radius coordinates of the intervals. Under certain assumptions these real
coordinate systems produce inner estimates for the tolerance solutions
of the original linear interval system. As a special case we show that a
linear system with interval right-hand side and an exact real matrix can
be reduced to two real linear systems for the midpoint-radius coordinates
of the intervals.
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