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1 Introduction

Hausdorff continuous (H-continuous) functions appear naturally in many areas
of mathematics like Approximation Theory [11], Real Analysis [1], [8], Interval
Analysis, [2], etc. From numerical point of view it is significant that the solu-
tions of large classes of nonlinear partial differential equations can be assimilated
through H-continuous functions [7]. As a particular case the discontinuous viscos-
ity solutions are also better represented through Hausdorff continuous functions
[6]. Hence the need to develop numerical procedures for computations with H-
continuous functions. It was shown recently, that the operations addition and
multiplication by scalars of the usual continuous functions on Ω ⊆ Rn can be
extended to H-continuous functions in such a way that the set H(Ω) of all Haus-
dorff continuous functions is a linear space [4]. In factH(Ω) is the largest linear
space involving interval functions. Furthermore, multiplication can also be ex-
tended [5], so that H(Ω) is a commutative algebra. Approximation of H(Ω) by
a subspace were discussed in [3]. In the present paper we consider the numerical
computations with H-continuous functions using ultra-arithmetical approach [9],
namely, by constructing a functoid of H-continuous functions. For simplicity we
consider Ω ⊆ R. In the next section we recall the definition of the algebraic
operations on H(Ω). The concept of functoid is defined in Section 3. In Section
4 we construct a functoid comprising a finite dimensional subspace of H(Ω) with
a Fourier base extended by a set of H-continuous functions. Application of the
functoid to the numerical solution of the wave equation is discussed in Section
5.

2 The algebra of H-continuous functions

The real line is denoted by R and the set of all finite real intervals by
IR = {[a, a] : a, a ∈ R, a ≤ a}. Given an interval a = [a, a] ∈ IR, w(a) = a − a
is the width of a. An interval a is called proper interval, if w(a) > 0 and point
interval, if w(a) = 0. Identifying a ∈ R with the point interval [a, a] ∈ IR, we
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consider R as a subset of IR. Let Ω ⊆ R be open. We recall [11] that an interval
function f : Ω → IR is S-continuous if its graph is a closed subset of Ω × R.
An interval function f : Ω → IR is Hausdorff continuous (H-continuous) if it is
an S-continuous function which is minimal with respect to inclusion, that is, if
ϕ : Ω → IR is an S-continuous function and ϕ ⊆ f implies ϕ = f . Here inclusion
is understood pointwise. We denote by H(Ω) the set of H-continuous functions
on Ω. The following theorem states an essential property of the continuous func-
tions which is preserved by the H-continuity [1].

Theorem 1. Let f, g ∈ H(Ω). If there exists a dense subset D of Ω such that
f(x) = g(x), x ∈ D, then f(x) = g(x), x ∈ Ω.

H-continuous functions are also similar to usual continuous real functions in
that they assume point values on a residual subset of Ω. More precisely, it is
shown in [1] that for every f ∈ H(Ω) the set Wf = {x ∈ Ω : w(f(x)) > 0} is of
first Baire category and f is continuous on Ω \Wf . Since a finite or countable
union of sets of first Baire category is also a set of first Baire category we have:

Theorem 2. Let F be a finite or countable set of H-continuous functions. Then
the set DF = {x ∈ Ω : w(f(x)) = 0, f ∈ F} = Ω \⋃

f∈F Wf is dense in Ω and
all functions f ∈ F are continuous on DF .

For every S-continuous function g we denote by [g] the set of H-continuous
functions contained in g, that is,

[g] = {f ∈ H(Ω) : f ⊆ g}.
Identifying {f} with f we have [f ] = f whenever f is H-continuous. The S-
continuous functions g such that the set [g] is a singleton, that is, it contains
only one function, play an important role in the sequel. In analogy with the
H-continuous functions, which are minimal S-continuous functions, we call these
functions quasi-minimal. The following characterization of the quasi-minimal
S-continuous functions is an easy consequence of Theorem 1.

Theorem 3. If the function f S-continuous on Ω and assumes point values on
a dense subset of Ω, then f is a quasi-minimal S-continuous function.

The familiar operations of addition, multiplication by scalars and multipli-
cation on the set of real intervals are defined for [a, a], [b, b] ∈ IR and α ∈ R as
follows:

[a, a] + [b, b]={a + b : a∈ [a, a], b∈ [b, b]}=[a + b, a + b],
α · [a, a]={αa : a∈ [a, a]}=[min{αa, αa},max{αa, αa}],
[a, a]×[b, b]={ab :a∈ [a, a], b∈ [b, b]}=[min{ab, ab, ab, ab}, max{ab, ab, ab, ab}].
Pointwise operations for interval functions are defined in the usual way:

(f + g)(x) = f(x) + g(x), (α · f)(x) = α · f(x), (f × g)(x) = f(x)× g(x). (1)

It is easy to see that the set of S-continuous functions is closed under the
above pointwise operations while the set of H-continuous functions is not, see
[2], [4]. Hence the significance of the following theorem.
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Theorem 4. For any f, g ∈ H(Ω) and α ∈ R the functions f + g, α · f and
f × g are quasi-minimal S-continuous functions.

Proof. Denote by Dfg the subset of Ω where both f and g assume point values.
Then f + g assumes point values on Dfg. According to Theorem 2 the set Dfg

is dense in Ω which in terms of Theorem 3 implies that f + g is quasi-minimal.
The quasi-minimality of α · f and f × g is proved in a similar way.

We define the algebraic operations on H(Ω) using Theorem 4. We denote
these operations respectively by ⊕, ¯ and ⊗ so that distinction from the point-
wise operations can be made.

Definition 1. Let f, g ∈ H(Ω) and α ∈ R. Then

f ⊕ g = [f + g], α¯ f = [α · f ], f ⊗ g = [f × g]. (2)

Theorem 5. The set H(Ω) is a commutative algebra with respect to the opera-
tions ⊕, ¯ and ⊗ given in (2).

The proof will be omitted; it involves standard techniques and is partially dis-
cussed in [5].

3 The concept of ultra-arithmetical functoid

Functoid is a structure resulting from the ultra-arithmetical approach to the
solution of problems in functional spaces. The aim of ultra-arithmetic is the
development of structures, data types and operations corresponding to func-
tions for direct digital implementation. On a digital computer equipped with
ultra-arithmetic, problems associated with functions are solvable, just as now
we solve algebraic problems [9]. Ultra-arithmetic is developed in analogy with
the development of computer arithmetic.

Let M be a space of functions and let M be a finite dimensional subspace
spanned by ΦN = {ϕk}N

k=0. Every function f ∈M is approximated by τN (f) ∈
M . The mapping τN is called rounding (in analogy with the rounding of numbers)
and the space M is called a screen of M. Every rounding must satisfy the
requirement (invariance of rounding on the screen): τN (f) = f for every f ∈ M .
Every function f =

∑N
i=0 αiϕi ∈ M can be represented by its coefficient vector

ν(f) = (α0, α1, . . . , αN ). Therefore the approximation of the functions in M is
realized through the mappings M τN−→ M

ν←→ KN+1, where K is the scalar
field of M (i.e. K = R or K = C). Since ν is a bijection we can identify M and
KN+1 and consider only the rounding τN .

In M we consider the operations addition (+), multiplication by scalars (.),
multiplication of functions (×) and integration (

∫
) defined in the conventional

way. By the semimorphism principle τN induces corresponding operations in M :

f b g = τN (f b g) , b ∈ {+, .,×};∫
f = τN

(∫
f

)
.

The structure (M, + , . , × ,

∫
) is called an (ultra-arithmetical) functoid [10].
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4 A functoid in H(Ω)

To simplify the matters we consider the function space of all bounded H-continuous
functions on Ω = (−1, 1). Furthermore, since we shall often use a shift of the
argument, we assume that all functions are produced periodically (period 2) over
R. Hence we denote the space under consideration by Hper(−1, 1). All algebraic
operations on Hper(−1, 1) are considered in terms of Definition 1. For simplicity
we denote them as the operations for reals. Namely, addition is ”+“ and a space
is interpreted as multiplication, where the context shows whether this is a mul-
tiplication by scalars or product of functions. In particular, note that indicating
the argument of a function in a formula does not mean pointwise operation.
Denote by s1 the H-continuous function given by

s1(x) =

{
x, if x ∈ (−1, 1),

[−1, 1], if x = ±1;

and produced periodically over the real line. Since the integrals of s1 and s1 are
equal over any interval the integral of s1 is a usual real function. We construct
iteratively the sequence of periodic splines s1, s2, s3, ... using

sj+1 =
∫

sj(x)dx + c,

∫ 1

−1

sj+1(x)dx = sj+2(1)− sj+2(−1) = 0.

Theorem 6. Let f ∈ Hper(−1, 1) be given. Assume that there exists a finite set
Λ = {λ1, λ2, ..., λm} ⊂ (−1, 1] such that f assumes real values and is p times
differentiable on (−1, 1] \ Λ with the p-th derivative in L2(−1, 1). Then f has a
unique representation in the form

f(x) = a0 +
m∑

l=1

p∑

j=1

ajlsj(x + 1− λl) +
∞∑

k=−∞
k 6=0

bkeikπx, (3)

where
∞∑

k=−∞
k 6=0

bkeikπx is p times differentiable with its p-th derivative in L2(−1, 1).

Furthermore, the coefficients are given by:

a0 =
1
2

∫ 1

−1

f(x)dx,

ajl =
1
2

(
dj−1f

dxj−1
(λl − 0)− dj−1f

dxj−1
(λl + 0)

)
,

j = 1, . . . , p

l = 1, . . . , m

bk =
1

2(ikπ)p

∫ 1

−1

dpf(x)
dxp

e−ikπxdx , k = ±1,±2, . . .
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The proof uses standard techniques and will be omitted.

Function f is approximated by

ρNp(f ; x) = a0 +
m∑

l=1

p∑

j=1

ajlsj(x + 1− λl) +
N∑

k=−N
k 6=0

bkeikπx (4)

with a rounding error

|f(x)− ρNp(f ; x)| =

∣∣∣∣∣∣
∑

|k|>N

bkeikπx

∣∣∣∣∣∣
≤

∑

|k|>N

|bk|

≤

 ∑

|k|>N

(kπ)2p|bk|2



1
2


 ∑

|k|>N

1
(kπ)2p




1
2

(5)

≤


1

2

∫ 1

−1

(
dpf(x)

dxp

)2

dx−
(

m∑

l=1

apl

)2

−
N∑

k=−N
k 6=0

(kπ)2p|bk|2



1
2(

2
(2p−1)π2pN2p−1

) 1
2

= o

(
1

Np− 1
2

)

Motivated by the above we consider a screen in Hper(−1, 1) comprising the
subspace M spanned by the basis

{s0(x)} ∪ {sj(x + 1− λl) : j = 0, 1, .., p, l = 1, ..m} ∪ {eikπx : k = 0,±1, ...,±N},
where p,m, N ∈ N and {λ1, λ2, ..., λm} ⊂ (−1, 1] are parameters with arbitrary
but fixed values. Here s0 is the function which is constant 1 on R. Defining a
rounding from Hper(−1, 1) to M is still an open problem. However, for functions
of the type described in Theorem 6 the rounding is defined through ρNp. Fur-
thermore, to define a functoid we only need to know how to round the functions
resulting from operations in M . For this purpose the rounding ρNp is sufficient.
Naturally, since M is a subspace it is closed under the operations addition and
multiplication by scalars. Furthermore, to define multiplication of functions and
integration we only need to define these operations on the elements of the basis.
The products of the functions in the basis are given by

sq1(x + 1− λl1)sq2(x + 1− λl2)

=
q1+q2∑

j=q1

(
j − 1
q1 − 1

)
sq1+q2−j(1 + λl1 − λl2)sj(x + 1− λl1) (6)

+
q1+q2∑

j=q2

(
j − 1
q2 − 1

)
sq1+q2−j(1− λl1 + λl2)sj(x + 1− λl2),

eik1πxeik2πx = ei(k1+k2)πx, (7)
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sq(x + 1− λl)einπx

=
p∑

j=q

(−1)nei(λl−1)π

(
j − 1
q − 1

)
(inπ)j−qsj(x + 1− λl) +

∞∑
k=−∞

k 6=0

βkeikπx, (8)

where in (8) the coefficients βk are given by

βk =
(−1)k−n−1np−q

kp(iπ)q

q−1∑
r=0

(
p

r

)(
n

k − n

)q−r

, if k 6= 0, n,

βn =
(

p

q

)
(inπ)−q.

For the respective integrals we have
∫

sj(x)dx = sj+1(x) , j = 1, ..., p, (9)
∫

eikπxdx =
1

ikπ
eikπx , k = 0,±1, ...,±N. (10)

Obviously in formulas (6)–(9) we obtain splines sj with j > p and exponents
eikπx with |k| > N which need to be rounded. Using that

sj(x + 1− λl) =
∞∑

k=−∞
k 6=0

(−1)k−1ei(1−λl)π

(ikπ)j
eikπ

all that needs to be rounded in Fourier series which is done by truncation. Note
that at any time we truncate a Fourier series of a function which is at least
p times differentiable with its p-th derivative in L2(−1, 1). Hence the uniform
norm of the error is o

(
1

Np− 1
2

)
. The integration of s0, when it arises in practical

problems, should be handled with special care since
∫

s0(x)dx = s1(x) holds
only on (−1, 1).

5 Application to the wave equation

We consider the wave equation in the form

utt(x, t)− uxx(x, t) = ρ(t)u(x, t) + φ(x, t)
u(x, 0) = g1(x), ut(x, 0) = g2(x)

with periodic boundary conditions at x = −1 and x = 1, assuming that g1, g2, φ
or some of their space derivatives may be discontinuous but the functions can be
represented as a spline-Fourier series (3) of the space variable. An approximation
to the solution is sought in the form

u(x, t) = a0(t) +
m∑

l=1

p∑

j=1

1∑

δ=−1

aljδ(t)sj(x+δt+1−αl)
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+
N∑

k=−N
k 6=0

bk(t)eikπx (11)

where αl, l = 1, . . . , m, are points in (−1, 1] where the data functions or some
of their first p−1 derivatives may be discontinuous.

The following Newton-type iterative procedure is applied

u(r+1) = (1− λ)u(r) + λ


g +

1
2

∫ ∫

G(x,t)

ρu(r)


 ,

where G(x, t) is the triangle with vertices (x, t), (x− t, 0), (x + t, 0) and

g(x, t) =
1
2


g1(x + t) + g1(x− t) +

∫ x+t

x−t

g2(θ)dθ +
∫ ∫

G(x,t)

φ(y, θ)dydθ


 .

The essential part of each iteration is the evaluation of the integral. This can be
done successfully using the arithmetic in the functoid discussed in the preceding
section. We also have to choose some form of representation of the coefficients
amj(t), bk(t). Here we carry out the computations representing those coefficients
as polynomials of t. The following formulas are used:

∫ ∫

G(x,t)

θq

q!
sj(y)dydθ = sj+q+2(x+t)+(−1)qsj+q+2(x−t)−2

q∑
l=0

l−even

tq−l

(q−l)!
sj+l+2(x)

∫ ∫

G(x,t)

θq

q!
sj(y+θ)dydθ =

q+1∑

l=0

(
−1

2

)l
tq+1−l

(q+1−l)!
sj+l+1(x+t)−

(
−1

2

)q+1

sj+q+2(x−t)

∫ ∫

G(x,t)

θq

q!
sj(y−θ)dydθ =

(
1
2

)q+1

sj+q+2(x+t)−
q+1∑

l=0

(
1
2

)l
tq+1−l

(q+1−l)!
sj+l+1(x−t)

∫ ∫

G(x,t)

θq

q!
eikπydydθ=

1
(ikπ)q+2


eikπ(x+t)+(−1)qeikπ(x−t)−2

q∑
l=0

l−even

tq−l

(ikπ)q−l(q−l)!
eikπx




= 2
∞∑
l=0

l−even

(ikπ)l tq+l+2

(q+l+2)!
eikπx.

The splines sj for j > p as well as the infinite series in the last formula above
are approximated by a partial sum of the respective Fourier series using the
rounding ρNp. As shown in Section 4 the truncation error is o

(
1

Np− 1
2

)
. The

main advantage of the method is that it produces highly accurate results for
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relatively small values of p and N for non-smooth data functions. Numerical
experiments using p = 5 and N = 5 produced 4–5 correct decimal digits of the
solution.

6 Conclusion

H-continuous functions appear in many fields of mathematics, notably in the
analysis of nonlinear PDE’s. Hence the need of a methodology for numerical
computations with H-continuous functions. We propose a method based on the
fact that H-continuous functions form a linear space when addition is defined in
a suitable way. Our method makes use of the ultra-arithmetic approach for the
construction of a relevant functoid. The method has been tested numerically for
the solution of the wave equation for non-smooth boundary conditions. Highly
accurate results have been achieved for rather small number of base functions,
i. e. small dimensions of the underlying linear space.
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