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Algebraic Operations on the Space
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We show that the operations addition and multiplication on the set
C(2) of all real continuous functions on Q@ C R” can be extended to the
set H(Q) of all Hausdorff continuous interval functions on € in such a
way that the algebraic structure of C'(Q2) is preserved, namely, H(Q) is
a commutative ring with identity. The operations on H(Q2) are defined
in three different but equivalent ways. This allows us to look at these
operations from different points of view as well as to show that they are
naturally associated with the Hausdorff continuous functions.

1. Introduction

The set H(Q) of all Hausdorff continuous interval functions appears natu-
rally in the context of Hausdorff approximations of real functions. The concept
of Hausdorff continuity of interval functions generalizes the concept of continu-
ity of real function in such a way that many essential properties of the usual
continuous real functions are preserved. Not least this is due to the fact that
the Hausdorff continuous functions assume real (point) values on a dense subset
of the domain and are completely determined by these values. It is well-known
that the set C'(2) of all continuous real functions defined on a subset Q of R is
a commutative ring with respect to the point-wise defined addition and multi-
plication of functions. Hence the natural question: is it possible to extend the
algebraic operations on C(f2) to the set H(Q) of all Hausdorff continuous func-
tions defined on 2 in a way which preserves the algebraic structure, that is, the
set of H(Q) is a commutative ring with respect to the extended operations? We
show in this paper that the answer to this question is positive. Furthermore,
we give three different but equivalent ways of defining algebraic operations on
H(Q) with the required properties. Namely, (i) through the point-wise inter-
val operations, (ii) by using an extension property of the Hausdorff continuous
functions, (iii) through the order convergence structure on H((2).
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2. General Setting

The real line is denoted by R and the set of all finite real intervals by IR =
{[a,q] : a,@ € R,a < @}. Given an interval @ = [g,a] = {z : a < z < @} € IR,
w(a) = a—a is the width of a, while |a| = max{|a|, |a|} is the modulus of a. An
interval a is called proper interval, if w(a) > 0 and point interval, if w(a) = 0.
Identifying a € R with the point interval [a, a] € IR, we consider R as a subset of
IR. We denote by A(Q2) the set of all locally bounded interval-valued functions
defined on an arbitrary set & C R™. The set A(2) contains the set A(Q2) of all
locally bounded real functions defined on Q. Recall that a real function or an
interval-valued function f defined on € is called locally bounded if for every
z € ) there exist § > 0 and M € R such that |f(y)| < M, y € Bs(z), where
Bs(z) ={y € Q: ||z — y|]| < 8} denotes the open §-neighborhood of z in Q.

Let D be a dense subset of 2. The mappings

I(D,9,-), S(D,Q,-) : A(D) — A(Q)
defined for f € A(D) and = € Q by
I(D,9, f)(=) = sup inf{f(y) : y € Bs(z) N D},
5(D, @, f)(z) = inf sup{f(y) : y € Bs(x) N D},
are called lower and upper Baire operators, respectively. The mapping
F: A(D) — A(Q),
called graph completion operator, is defined by
F(D,Q, f)(e) = [I(D,9, f)(z), $(D,Q, f)(z)], zeQ, feAlD).

In the case when D = 2 the sets D and Q will be omitted, thus we write
I(f) =1(2,Q, f), S(f) = S(2,9, f), F(f) = F(2,Q, ).

Definition 1. A function f € A(R2) is S-continuous, if F(f) = f.

Definition 2. A function f € A(R2) is Hausdorff continuous (H-continuous),
if g € A(R) with g(z) C f(z), z € Q, implies F(g)(z) = f(z), z € Q.

Theorem 1 ([1, 7]). For every f € A(Q) the functions F(I(S(f))) and
F(S(I(f))) are H-continuous.

The following theorem states an essential property of the continuous func-
tions which is preserved by the H-continuity, [1].

Theorem 2. Let f,g € H(Q). If there exists a dense subset D of Q such
that f(z) = g(z), = € D, then f(z) = g(z), z € Q.
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H-continuous functions are also similar to the usual continuous real func-
tions in that they assume point values everywhere on Q except for a set of first
Baire category. More precisely, it is shown in [1] that for every f € H(Q) the
set Wy = {& € @ : w(f(x)) > 0} is of first Baire category and f is continuous
on Q \ W;. Since a finite or countable union of sets of first Baire category is
also a set of first Baire category we have:

Theorem 3. Let the set Q be open and let F be a finite or countable set
of H-continuous functions. Then the set

Dr={zeQ:w(f(z)) =0, feFr=0\ ] W, (1)
feEF

is dense in Q and all functions f € F are continuous on Dr.

The graph completion operator is inclusion isotone: i) w. r. t. the func-
tional argument, that is, if f,g € A(D), where D is dense in 2, then

f(z) Cg(z), ze D = F(D,Q, f)(z) C F(D,Q9)(z), =€,

and, ii) w. r. t. the set D in the sense that if D; and D, are dense subsets of
Q and f € A(D1 U D3), then

D, - D, — F(Dl,ﬂ,f)(:lf) - F(D2,Q,f)(a}), z €N (2)

In particular, (2) implies that for any dense subset D of Q and f € A(R2) we
have

F(D,Q, f)(z) € F(f)(z), zeQ. (3)
Let f € A(Q). For every = € Q the value of f is an interval [f(z), f(z)] €

IR. Hence, f can be written in the form f = [f, f] where f, f € A() and

flz) < f(z), z € Q. The lower and upper Baire operators as well as the
graph completion operator of an interval-valued function f can be represented
in terms of f and f, namely, for every dense subset D of Q: I(D,Q, f) =

I(D,Q, f), S(D,Q, f) = S(D,Q, f), F(D,Q, f) = [I(D,Q, f), S(D,Q, f)].

3. Interval Operations and Operations on H(£2)

The familiar operations of addition and multiplication on the set of real
intervals are defined for [a, @], [b, b] € IR as follows [2]:

[a,a] + [b,b]={a + b: ac[a,a],be[b,b]}=[a+b,a+b],
[a,a] x[b,b]={ab : a€[a,a], bE [b, b]} =[min{ab, ab, ab, ab}, max{ab, ab, ab, ab}|.
The operations for interval functions are defined point-wise in the usual way:

(F+9)(2) = f(z) +9(z),  (f xg)(z) = f(z) x g(). (4)
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Example 1. Consider the functions f,g € H(R) given by

0, ifz<0 0, ife<0
fl@)=1¢00,1], ifz=0  g(z)=4[-1,0], fz=0
1, ifz >0, -1, ifz > 0.
Using (4) we have
0, ifz<0
(f+9)(z)=<¢[-1,1], ifz=0
0, if z > 0.

Example 1 shows that the point-wise sum of H-continuous functions is not
necessarily an H-continuous function. Hence the significance of the following
two theorems.

Theorem 4 ([2]). If the interval functions f,g € A(Q) are S-continuous,
then the functions f + g and f X g are also S-continuous.

Theorem 5. Let f,g € H(Q).

(a) There exists a unique function p € H(Q) satisfying the inclusion
p(z) € (f +9)(z), z € Q.

(b) There ezists a unique function q € H(Q) satisfying the inclusion
q(z) C (f x g)(z), z € Q.

Proof. We will prove only (a) because (b) can be proved in a similar
way. The existence of the function p follows from Theorem 1. Indeed, both
functions F(I(S(f+g))) and F(S(I(f +g))) satisfy the required inclusion. To
prove the uniqueness let us assume that py, p2 € H(Q) both satisfy the inclusion
in (a). Consider the set Dy, = {z € 2 : w(f(z)) = w(g(z)) = 0}. Obviously
w((f +g)(z)) = 0 for x € Dy,. Therefore, due to the assumed inclusions we
have pi(z) = p2(z) = f(z) + g(z), ¢ € Dyy. According to Theorem 3 the
set D¢, is dense in 2. Using that the functions p; and p, are H-continuous it
follows from Theorem 2 that p; = ps. O

Now we define the operations @ and ® as follows.

Definition 3. Let f,g € H)(R2). Then f @ g is the unique Hausdorff con-
tinuous function satisfying the inclusion (f @ g)(z) C (f + g)(z), ¢ €
f ® g is the unique Hausdorff continuous function satisfying the inclusion
(f®9)(z) C (f xg)(z), z € Q.
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The existence of both f ® g and f ® g is guaranteed by Theorem 5.

It is important to note that the values of f &g and f ® g at the points where
both operands assume interval values can not be determined point-wise, i.e.,
from the values of f and g at these points. This is illustrated by the following
example.

Example 2. Consider the functions f,g € H(R) given by

_ Jsin(l/z), ifz#0 _Jcos(l/z), ifz#0
f(m)_{[—l,l], ifz=0, g(m)_{[—l,l], ifz =0.

We have /2
_ JV2cos(1/x+7/4), ifz#0,
(fog)(z) = {[—\/5, \/5], fo=0.

Clearly (f & g)(0) can not be obtained just from the values f(0) and g(0).

According to Theorem 1, for any f,g € H(Q) the functions F(S(I(f + g)))
and F(I(S(f+g))) are Hausdorff continuous. Moreover, these functions satisfy
the inclusions

F(S(I(f+9)(z) C(f+9)(z), FIS(f+9))(z) C(f+9)(z), ze
Therefore they both coincide with f & g. Hence we have

feg=F(I(S(f+g)=F(SI(f+g))

In a similar way we obtain

fog=FI(S(f xg)))=F(SUI(f x9)))-

One can immediately see from the above representations that if f and g are
usual continuous real functions we have f®g = f+gand f®g = f x g.
Hence & and ® extend the operations of addition and multiplication on C().
A further motivation for considering these operations is in the fact that the
algebraic structure of C () is preserved as stated in the next theorem.

Theorem 6. The set H(QY) is a commutative ring with identity with respect
to the operations ® and Q.

Proof. The commutative laws for both @ and ® follow immediately from
Definition 3. It is also obvious that the additive identity is the constant zero
function while the multiplicative identity is the constant function equal to 1.
We will show now the existence of the additive inverse. Let f = [f, f] € H(Q2).
Consider the function g € H(Q) given by g(z) = [~ f(z), — f(z)], z € Q. Clearly
we have B

0€ f(z) +g(z), ze€.

Then, according to Definition 3, f @ g is the constant zero function.
The proof of the associative and distributive laws is an easy application of
the techniques derived in the next section and will be proved there. |
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4. Extension Property and an Alternative Definition of
the Operations on H(2)

Let D be a dense subset of Q. Extending a function f defined on D to
 while preserving its properties (e.g. linearity, continuity) is an important
issue in functional analysis. Recall that if f is continuous on D it does not
necessarily have a continuous extension on 2. Hence the significance of the
next theorem which was proved in [3].

Theorem 7. Let ¢ € H(D), where D is a dense subset of Q. Then there
ezists a unique f € H(Q) such that f(z) = ¢(z), © € D. Namely, f =
F(D,Q, ).

For every two functions f,g € H(2) denote

Dy ={z € @ :w(f(z)) = w(g(z)) = 0}.

As was shown already the point-wise sum and product of H-continuous func-
tions is not always H-continuous. However, the restrictions of f, g, f + g and
f x gonthe set Dy, are all real continuous functions, see Theorem 3. As usual,
these restrictions are denoted by f|p,,, (f+g)|p,,, etc. Using that the set Dy,
is dense in Q, the following definition of the operations & and ® is suggested.

Definition 4. Let f,g € H(Q). Then

(a) f @ g is the unique H-continuous extension of (f + g)|p,, on Q given by
Theorem 7, that is, f @ g = F(Dyg, Q, f + g).

(b) f ® g is the unique H-continuous extension of (f x g)|p,, on Q given by
Theorem 7, that is, f ® g = F(Dysg, Q, f X g).

In order to justify the use of the notations @ and ® let us immediately
prove that Definitions 3 and 4 are equivalent. Indeed, using property (3) and
the fact that f + g is S-continuous, see Theorem 4, we have

F(Dyg,Q, f +9)(z) CF(f +9g)(z) =(f +9)(z), =€

Hence F(Dy¢,4, Q, f + g) is the unique Hausdorff continuous function satisfying
the inclusion required in Definition 3, which implies that F'(Dy4, Q, f +g) is the
sum of f and g according to Definition 3. In a similar way one can show that
F(Dy,,Q, f x g) is the product of f and g according to Definition 3. Therefore
Definitions 3 and 4 are equivalent.

Definition 4 is particularly useful for evaluating arithmetical expressions
involving more than two operands since one can evaluate the expression on a set
where all operands assume point values and then extend the resulting function
to Q. We will explain the procedure in detail. Let E(+, X, 21, 22, ..., 2x) be
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an expression involving the operations 4+ and X and k operands. Let F =
{f1, f2y - fr} C H(Q). Then the functions

E(+’ X’fl’f2’ ""fk) and E(®i ®1f11f21 1fk) (5)

are both well defined, the first one being S-continuous, the second one being
H-continuous. According to Theorem 3 the set D given by (1) is dense in Q.
Then a simple connection between the functions (5) is given in the next the-
orem, which is proved easily using the definition of the operations and the
extension property.

Theorem 8. For any set of functions F = {f1, f2,.-, fu} C H(R) and
arithmetical expression E(+, X, z1, 22, ..., 2x) we have

F(D]‘—’QiE(+1 Xiflifzi'"’fk)) = E(®’®’f1’f21"'1fk)

As an application of Theorem 8 we show that the associative and distribu-
tive laws of a ring hold true on H(Q) with respect to the operations & and ®.
This completes the proof of Theorem 6.

Proof of the associative and distributive laws on H(€2). Let f,g,h €
H(Q) and let D7 be the dense subset of Q given by (1) with F = {f, g, h}. Since
the values of f, g and h on the set Dr are all real numbers (point intervals),
the functions f, g and h satisfy on Dr the associative and distributive laws
with respect to the operations + and x . Then using Theorem 8 we have

(fog)@h=FDr,0(f+9)+h)=FDr,0%f+(g+h)=FfD(gDh),
(f®9)®h=F(Dr,0(f xg) xh)=F(Dr,Q f x(gxh))=f®(g®h),
(f(z) @ g(z)) ® h(z) = F(Dr, R, (f +9) x h)
=F(Dr,Qfxh+gxh)=fQhdg®h,

which shows that both associative laws as well as the distributive law hold
true. 0

5. Definition of the Operations on H(€2) through the
Order Convergence Structure

Partial order can be defined for intervals in different ways. Here we consider
the partial order on IR given by
[a,a] < [b,b] < a<b a<b. (6)

The partial order on H(2) which is induced by (6) in a point-wise way, that is,
for f,g € H(Q)

f<g &= f(z)<g(z), ze€qQ, (7)

is naturally associated with H(Q2). For example, it was shown in [1] that the
set H(2) is Dedekind order complete with respect to this order.
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The order convergence of sequences on a poset is defined through the partial
order.

Definition 5. Let P be a poset with a partial order <. A sequence (fp)nen
on P is said to order converge to f € P if there exist on P an increasing sequence
(an)nen and a decreasing sequence (B, )nen such that ap, < &, < B, n €N,
and f = sup a, = inf G,.

neN neN

It is well-known that in general the order convergence on a poset is not topo-
logical in the sense that there is no topology with class of convergent sequences
exactly equal to the class of the order convergent sequences. In particular this
is the case of H(Q) with respect to the partial order (7). However, the order
convergence induces on H(2) the structure of the so-called F'S sequential con-
vergence space. See [6] for the definition and further details on F'S sequential
convergence spaces and convergence (filter) spaces.

The concept of Cauchy sequence in general can not be defined within the
realm of sequential convergence only but rather using the stronger concept of
a convergence space [6]. It is shown in [4] that the order convergence structure
on C(Q) is induced by a convergence space and we have the following char-
acterization of the Cauchy sequences. Let (f,)nen be a sequence on C(2).
Then

There exists a decreasing sequence
(fn)nen is Cauchy < (Bn)nen on C(R2) such that inf 3, =0 (8)
and f,, — fx <Bn, mk>n,neN

It is also shown in [4] that the convergence space completion of C(2) is H().
More precisely, we have the following theorem.

Theorem 9. (i) For every Cauchy sequence (fn)nen on C(Q2) there ez-
ists f € H(Q) such that f, — f.

(i) For every f € H(Q) there ezists a Cauchy sequence (fn)nen on C()
such that f, — f. Moreover, the sequence (fn)nen can be selected to be
either increasing or decreasing.

Definition 6. Let f,g € H(Q2) and let (f,)nen and (gn)nen be the Cauchy
sequences on C(Q) existing in terms of Theorem 9, that is, we have f, — f,
gn — g. Then f @ g is the order limit of (f,, + gn)nen and f ® g is the order
limit of (f X gn)nen-

Let us first note that the order limits stated in Definition 6 do exist. Indeed,
since (fn)nen and (gn)nen are Cauchy sequences on C(2) one can see from
(8) that their sum (f, + gn)nen and their product (f, X gn)nen are Cauchy
sequences. Hence according to Theorem 9 (i) they both order converge.

To establish the consistency of the Definition 6 we need to show that f @ g
and f®g do not depend on the particular choice of the sequences. Let (fﬁl))neN,



R. Anguelov, S. Markov and Bl. Sendov 43

(fn )neN, (g£ ))neN, (g£ ))neN be Cauchy sequences on C(Q2 ) such that £ —
7, gn — g, 1 = 1,2. We shall show that the sequences (fn + g,gl)) en and
(fn +g( ))nEN converge to the same limit, resp. the sequences (f,(1 X gg))neN
and (f( ) xgg))neN converge to the same limit. Denote by (f,.)nen and (gn)nen
the trivial mixtures of the sequences ( ,(Ll))neN, (f,(Lz))neN and, respectively,

(gsl))neN, (gstZ))nEN, that is, f2n—1 = fr(zl), f2n = f‘r(L2)1 g2n—-1 = gr(zl), g2n =

gn2 . In an FS sequential convergence space the trivial mixture of sequences
converging to the same limit also converges to that limit [6]. Hence we have
fn = f, gn — g. It is easy to see that (fn)nen and (gn)nen are Cauchy
sequences. Hence (f, + gn)nen is also Cauchy sequence, which implies that
(fn + gn)nen converges on H(2), see Theorem 9 (i). Therefore, (f,gl) S))HEN

and ( f,(Lz) + gsf))neN, being subsequences of the order convergent sequence (f,, +
gn)neN order converge to the same limit. In a similar way we prove that

(fn X gn )neN and (f,(f) X g,(f))neN converge to the same limit.
Theorem 10. Definition 3 and Definition 6 are equivalent.

Proof. Let f,g € H(Q) and let h; be their sum according to Definition 3
while hs is their sum according to Definition 6. We shall show that h; = ho.
It follows from Theorem 9(ii) that we can select increasing sequences (fy)nen,
(gn)nen on C(Q) such that f, — f, g» — g or equivalently, f = sup s

g = supg,.- Then, according to Definition 6, hs is the order limit of the
neN

increasing sequence (f, + gn)nen, that is, he = sup(fn + gn)- On the other

neN
hand,

fa(@) + gn(2) < f(2) + g(2) < ba(z), z€.

Therefore, ho < h;. In a similar way by using decreasing sequences we prove
that he > h;. Hence h; = hs.

The proof of the equivalence of definitions of multiplication is done using a
similar approach but is technically more complicated and will be omitted. [

6. Conclusion

H-continuous functions are special interval-valued functions which are com-
monly used in practice, e. g. histograms are such functions. However, in order
to avoid arithmetic operations with intervals, such functions are traditionally
treated by means of real-valued functions, such as, e. g. semi-continuous
functions. A difficulty in using H-continuous functions is that, if we add two
H-continuous functions that have interval values at same argument using point-
wise interval arithmetic, then we may obtain as a result an interval function
which is not H-continuous. In this work we define addition and multiplication
so that the set of H-continuous functions is closed under these operations. We
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show that the arithmetic operations addition and multiplication on the set of
all Hausdorff continuous interval functions preserve the algebraic structure of
the set of real continuous functions, which is a commutative ring with identity.
Three different but equivalent definitions are presented, which allow to look at
these operations from different points of view as well as to show that they are
naturally associated with the Hausdorff continuous functions. These results
make H-continuous functions an attractive tool in real analysis and provide a
bridge between real and interval analysis.
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